Skip to main content

Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards

Abstract

This study proposes a deep learning-based real-time variable flow control system using the segmentation of fruit trees in a pear orchard. The real-time flow rate control, undesired pressure fluctuation and theoretical modeling may differ from those in the real world. Therefore, two types of preliminary experiments were conducted to examine the linear relationship of the flow rate modeling. Through preliminary experiments, the parameters of the pulse width modulation (PWM) controller were optimized, and a field experiment was conducted to confirm the performance of the variable flow rate control system. The field test was conducted for three cases: all open, on/off control, and variable flow rate control, showing results of 56.15 (\(\pm 17.24\))%, 68.95 (\(\pm 21.12)\)% and 57.33 (\(\pm 21.73\))% for each control. The result revealed that the proposed system performed satisfactorily, showing that pesticide use and the risk of pesticide exposure could be reduced.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. Asaei, H., Jafari, A., & Loghavi, M. (2019). Site-specific orchard sprayer equipped with machine vision for chemical usage management. Computers and Electronics in Agriculture, 162, 431–439. https://doi.org/10.1016/j.compag.2019.04.040.

    Article  Google Scholar 

  2. Bac, C. W., van Henten, E. J., Hemming, J., & Edan, Y. (2014). Harvesting robots for high-value crops: State-of-the-art review and challenges ahead. Journal of Field Robotics, 31(6), 888. https://doi.org/10.1002/rob.21525.

    Article  Google Scholar 

  3. Berenstein, R., & Edan, Y. (2017). Automatic adjustable spraying device for site-specific agricultural application. IEEE Transactions on Automation Science and Engineering, 15(2), 641. https://doi.org/10.1109/TASE.2017.2656143.

    Article  Google Scholar 

  4. Berk, P., Hocevar, M., Stajnko, D., & Belsak, A. (2016). Development of alternative plant protection product application techniques in orchards, based on measurement sensing system: A review. Computers and Electronics in Agriculture, 124, 641. https://doi.org/10.1016/j.compag.2016.04.018.

    Article  Google Scholar 

  5. Butts, T. R., Butts, L. E., Luck, J. D., Fritz, B. K., Hoffmann, W. C., & Kruger, G. R. (2019). Droplet size and nozzle tip pressure from a pulse-width modulation sprayer. Biosystems Engineering, 178, 52. https://doi.org/10.1016/j.biosystemseng.2018.11.004.

    Article  Google Scholar 

  6. Cai, J., Wang, X., Gao, Y., Yang, S., & Zhao, C. (2019). Design and performance evaluation of a variable-rate orchard sprayer based on a laser-scanning sensor. International Journal of Agricultural and Biological Engineering, 12(6), 51. https://doi.org/10.25165/j.ijabe.20191206.4174.

    Article  Google Scholar 

  7. Chen, L., Wallhead, M., Zhu, H., & Fulcher, A. (2019). Control of insects and diseases with intelligent variable-rate sprayers in ornamental nurseries. Journal of Environmental Horticulture, 37(3), 90. https://doi.org/10.24266/0738-2898-37.3.90.

    Article  Google Scholar 

  8. Chen, Y., Zhu, H., & Ozkan, H. (2012). Development of a variable-rate sprayer with laser scanning sensor to synchronize spray outputs to tree structures. Transactions of the ASABE, 55(3), 773. https://doi.org/10.13031/2013.41509.

    Article  Google Scholar 

  9. Chen, Y., Zhu, H., & Ozkan, H. E. (2011). Development of lidar-guided sprayer to synchronize spray outputs with canopy structures. In 2011, Louisville, Kentucky, August 7–10, 2011 (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/2013.37206.

  10. Cheng, Z., Qi, L., Wu, Y., Zhang, H., Xiao, Y., Yang, Z., & Li, X. (2019). Spray deposition and distribution under different canopy densities based on FCM-R. In 2019 ASABE annual international meeting (p. 1). American Society of Agricultural and Biological Engineers. https://doi.org/10.13031/aim.201900434.

  11. Escolà, A., Rosell-Polo, J., Planas, S., Gil, E., Pomar, J., Camp, F., Llorens, J., & Solanelles, F. (2013). Variable rate sprayer. Part 1—Orchard prototype: Design, implementation and validation. Computers and Electronics in Agriculture, 95, 122. https://doi.org/10.1016/j.compag.2013.02.004.

    Article  Google Scholar 

  12. Gao, G., Xiao, K., & Ma, Y. (2018). A leaf-wall-to-spray-device distance and leaf-wall-density-based automatic route-planning spray algorithm for vineyards. Crop Protection, 111, 33. https://doi.org/10.1016/j.cropro.2018.04.015.

    Article  Google Scholar 

  13. Giles, D., Klassen, P., Niederholzer, F., Downey, D., et al. (2011). “Smart” sprayer technology provides environmental and economic benefits in California orchards. California Agriculture, 65(2), 85. https://doi.org/10.3733/ca.v065n02p85.

    Article  Google Scholar 

  14. Guan, Y., Chen, D., He, K., Liu, Y., & Li, L. (2015). Review on research and application of variable rate spray in agriculture. In 2015 IEEE 10th conference on industrial electronics and applications (ICIEA) (p. 1575). IEEE. https://doi.org/10.1109/ICIEA.2015.7334360.

  15. Ju, C., & Son, H. I. (2019). Modeling and control of heterogeneous agricultural field robots based on Ramadge–Wonham theory. IEEE Robotics and Automation Letters, 5(1), 48. https://doi.org/10.1109/LRA.2019.2941178.

    Article  Google Scholar 

  16. Jun, J., Kim, J., Seol, J., Kim, J., & Son, H. I. (2021). Towards an efficient tomato harvesting robot: 3D perception, manipulation, and end-effector. IEEE Access, 9, 17631–17640. https://doi.org/10.1109/ACCESS.2021.3052240.

    Article  Google Scholar 

  17. Kim, J., & Son, H. I. (2020). A Voronoi diagram-based workspace partition for weak cooperation of multi-robot system in orchard. IEEE Access, 8, 20676. https://doi.org/10.1109/ACCESS.2020.2969449.

    Article  Google Scholar 

  18. Kim, J., Kim, S., Ju, C., & Son, H. I. (2019). Unmanned aerial vehicles in agriculture: A review of perspective of platform, control, and applications. IEEE Access, 7, 105100. https://doi.org/10.1109/ACCESS.2019.2932119.

    Article  Google Scholar 

  19. Kim, J., Seol, J., Lee, S., Hong, S. W., & Son, H. I. (2020). An intelligent spraying system with deep learning-based semantic segmentation of fruit trees in orchards. In 2020 IEEE international conference on robotics and automation (ICRA) (p. 3923). IEEE. https://doi.org/10.1109/ICRA40945.2020.9197556.

  20. Koen, B. V. (1988). Toward a definition of the engineering method. European Journal of Engineering Education, 13(3), 307–315. https://doi.org/10.1080/03043798808939429.

    Article  Google Scholar 

  21. Le, M.-Q., Pham, M.T., Moreau, R., & Redarce, T. (2010). Comparison of a PWM and a hybrid force control for a pneumatic actuator using on/off solenoid valves. In 2010 IEEE/ASME international conference on advanced intelligent mechatronics (p. 1146). IEEE. https://doi.org/10.1109/AIM.2010.5695894.

  22. Liu, H., Zhu, H., Shen, Y., Chen, Y., & Ozkan, H. E. (2014). Development of digital flow control system for multi-channel variable-rate sprayers. Transactions of the ASABE, 57(1), 273. https://doi.org/10.13031/trans.57.10216.

    Article  Google Scholar 

  23. Mahmud, M. S., Zahid, A., He, L., & Martin, P. (2021). Opportunities and possibilities of developing an advanced precision spraying system for tree fruits. Sensors, 21(9), 3262. https://doi.org/10.3390/s21093262.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Manandhar, A., Zhu, H., Ozkan, E., & Shah, A. (2020). Techno-economic impacts of using a laser-guided variable-rate spraying system to retrofit conventional constant-rate sprayers. Precision Agriculture, 21, 1–16. https://doi.org/10.1007/s11119-020-09712-8.

    Article  Google Scholar 

  25. Osterman, A., Goděsa, T., Hočevar, M., Širok, B., & Stopar, M. (2013). Real-time positioning algorithm for variable-geometry air-assisted orchard sprayer. Computers and Electronics in Agriculture, 98, 175. https://doi.org/10.1016/j.compag.2013.08.013.

    Article  Google Scholar 

  26. Salcedo, R., Zhu, H., Zhang, Z., Wei, Z., Chen, L., Ozkan, E., & Falchieri, D. (2020). Foliar deposition and coverage on young apple trees with PWM-controlled spray systems. Computers and Electronics in Agriculture, 178, 105794. https://doi.org/10.1016/j.compag.2020.105794.

    Article  Google Scholar 

  27. Shen, Y., Zhu, H., Liu, H., Chen, Y., & Ozkan, H. (2013). Delay times of a lidar-guided precision sprayer control system. In ASABE annual international meeting. Paper.https://doi.org/10.13031/aim.20131594649.

  28. Shen, Y., Zhu, H., Liu, H., Chen, Y., & Ozkan, E. (2017). Development of a laser-guided, embedded-computer-controlled, air-assisted precision sprayer. Transactions of the ASABE, 60(6), 1827. https://doi.org/10.13031/trans.12455.

    Article  Google Scholar 

  29. Wei, Q., Sanqin, Z., Weimin, D., Chengda, S., Jiang, L., Yinian, L., & Jiabing, G. (2016). Effects of fan speed on spray deposition and drift for targeting air-assisted sprayer in pear orchard. International Journal of Agricultural and Biological Engineering, 9(4), 53. https://doi.org/10.3965/j.ijabe.20160904.1938.

    Article  Google Scholar 

  30. Xiao, K., Ma, Y., & Gao, G. (2017). An intelligent precision orchard pesticide spray technique based on the depth-of-field extraction algorithm. Computers and Electronics in Agriculture, 133, 30. https://doi.org/10.1016/j.compag.2016.12.002.

    Article  Google Scholar 

  31. Zeng, L., Feng, J., & He, L. (2020). Semantic segmentation of sparse 3D point cloud based on geometrical features for trellis-structured apple orchard. Biosystems Engineering, 196, 46–55. https://doi.org/10.1016/j.biosystemseng.2020.05.015.

    Article  Google Scholar 

  32. Zhou, M., Jiang, H., Shi, W., & Knoll, A. (2018). Design and optimization of the target spray platform. In 2018 IEEE international conference on robotics and automation (ICRA)-workshop on robotic vision and action in agriculture.

Download references

Acknowledgements

This research was supported, in part, by the Korea Institute for Advancement of Technology (KIAT) Grant funded by the Korea Government (MOTIE) (P0008473, HRD Program for Industrial Innovation); in part, by Korea Institute of Planning and Evaluation for Technology in Food, Agriculture and Forestry (IPET) through Agriculture, Food and Rural Affairs Convergence Technologies Program for Educating Creative Global Leader Program, funded by Ministry of Agriculture, Food and Rural Affairs (MAFRA) (716001-7).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jaehwi Seol, Jeongeun Kim or Hyoung Il Son.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Seol, J., Kim, J. & Son, H.I. Field evaluations of a deep learning-based intelligent spraying robot with flow control for pear orchards. Precision Agric (2021). https://doi.org/10.1007/s11119-021-09856-1

Download citation

Keywords

  • Variable flow rate control
  • Deep learning
  • Field experiments
  • Pulse width modulation