Skip to main content
Log in

Identifying crop yield gaps with site- and season-specific data-driven models of yield potential

  • Published:
Precision Agriculture Aims and scope Submit manuscript

A Correction to this article was published on 02 December 2021

This article has been updated

Abstract

There is considerable interest and value in identifying the gap between crop yields that have actually been achieved, and yields that could have potentially been achieved. A suite of methods currently exist to estimate the yield potential of a crop, but there are no approaches that predict the site- and season-specific yield potential using datasets that are readily available and easily accessible for farmers. The aim of this study was to fill this need and develop a novel approach to identify crop yield gaps through site- and season-specific models of crop yield potential. The study focused on cotton lint yield, with data from 14 different seasons and 68 different fields from a collection of large, irrigated cotton farms in eastern Australia. This abundance of yield data was then joined with other spatial and temporal datasets that describe yield, such as rainfall, temperature, soil, and management. A quantile random forest machine learning model was then used to model yield at 30 m resolution, where the 95th percentile predictions were treated as the yield potential. The yield gaps at a 30 m resolution were then estimated for all seasons and sites. The results were compared to a more traditional ‘historical maximum yield’ approach, where no data modelling and only empirical yield data was used to estimate the yield potential. This revealed that there was a general agreement between the two approaches, although the quantile machine learning approach is both site- and season-specific, not just site-specific. Overall, there is a great need for alternative approaches to estimate yield potential and yield gaps, as the approaches currently available possess many limitations. The approach developed in this study has the potential for wide-spread adoption in broadacre cropping systems, and if the causes of yield gaps are identified, could lead to the implementation of management strategies to close them.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Much of the data used in this study is private (crop yield data) and not available for public release.

Code availability

The code developed in this study is not available.

Change history

References

  • Baldock, J. A., McNally, S. R., Beare, M. H., Curtin, D., & Hawke, B. (2019). Predicting soil carbon saturation deficit and related properties of New Zealand soils using infrared spectroscopy. Soil Research, 57, 835–844.

    Article  CAS  Google Scholar 

  • Beare, M. H., McNeill, S. J., Curtin, D., Parfitt, R. L., Jones, H. S., Dodd, M. B., & Sharp, J. (2014). Estimating the organic carbon stabilisation capacity and saturation deficit of soils: A New Zealand case study. Biogeochemistry, 120, 71–87.

    Article  CAS  Google Scholar 

  • Bureau of Meteorology. (2020). Climate statistics for Australian locations – Moree Aero. Retrieved November 26, 2020, from http://www.bom.gov.au/jsp/ncc/cdio/weatherData/av?p_nccObsCode=139&p_display_type=dataFile&p_startYear=&p_c=-584231621&p_stn_num=054038

  • Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96, 5952–5959.

    Article  CAS  Google Scholar 

  • Colwell, J. E. (1974). Vegetation canopy reflectance. Remote Sensing of Environment, 3, 175–183.

    Article  Google Scholar 

  • Constable, G. A., & Shaw, A. J. (1988). Temperature requirements for cotton. Agfact P5.3.5. 1–4.

  • Constable, G. A., & Bange, M. P. (2015). The yield potential of cotton (Gossypium hirsutum L.). Field Crops Research, 182, 98–106.

    Article  Google Scholar 

  • Department of Finance, Services and Innovation. (2019). NSW Foundation spatial data framework-elevation and depth-digital elevation model. Retrieved November 4, 2019, from https://data.nsw.gov.au/data/dataset/8f73f5ca-4f7f-4707-bfe2-0efbb9027107

  • Evans, L. T. (1996). Crop evolution, adaptation and yield. Cambridge University Press.

    Google Scholar 

  • Filippi, P., Bishop, T. F. A., & Whelan, B. M. (2019a). Identifying yield stability and drivers of yield variability in cotton using multi-layered, whole-farm datasets. In Precision agriculture 2019 (pp. 1740–1747). Wageningen Academic Publishers.

  • Filippi, P., Cattle, S. R., Pringle, M. J., & Bishop, T. F. A. (2020a). A two-step modelling approach to map the occurrence and quantity of soil inorganic carbon. Geoderma, 371, 114382.

    Article  CAS  Google Scholar 

  • Filippi, P., Jones, E. J., Wimalathunge, N. S., Somarathna, P. D. S. N., Pozza, L. E., Ugbaje, S. U., Jephcott, T. G., Paterson, S. E., Whelan, B. M., & Bishop, T. F. A. (2019b). An approach to forecast grain crop yield using multi-layered, multi-farm data sets and machine learning. Precision Agriculture, 20, 1015–1028.

    Article  Google Scholar 

  • Filippi, P., Whelan, B. M., Vervoort, R. W., & Bishop, T. F. A. (2020b). Mid-season empirical cotton yield forecasts at fine resolutions using large yield mapping datasets and diverse spatial covariates. Agricultural Systems, 184, 102894.

    Article  Google Scholar 

  • Foley, J. A., Ramankutty, N., Brauman, K. A., Cassidy, E. S., Gerber, J. S., Johnston, M., Mueller, N. D., O’Connell, C., Ray, D. K., West, P. C., & Balzer, C. (2011). Solutions for a cultivated planet. Nature, 478, 337–342.

    Article  CAS  PubMed  Google Scholar 

  • Geoscience Australia. (2019). Geophysical archive data delivery system. Retrieved November 4, 2019, from http://www.geoscience.gov.au/cgi-bin/mapserv?map=/nas/web/ops/prod/apps/mapserver/gadds/wms_map/gadds.map&mode=browse

  • Gobbett, D. L., Hochman, Z., Horan, H., Garcia, J. N., Grassini, P., & Cassman, K. G. (2017). Yield gap analysis of rainfed wheat demonstrates local to global relevance. The Journal of Agricultural Science, 155, 282–299.

    Article  Google Scholar 

  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of the Environment, 202, 18–27.

    Article  Google Scholar 

  • Grassini, P., Thorburn, J., Burr, C., & Cassman, K. G. (2011). High-yield irrigated maize in the Western US Corn Belt: I. On-farm yield, yield potential, and impact of agronomic practices. Field Crops Research, 120, 142–150.

    Article  Google Scholar 

  • Gyamerah, S. A., Ngare, P., & Ikpe, D. (2019). Crop yield probability density forecasting via quantile random forest and Epanechnikov Kernel function. arXiv preprint arXiv:1904.10959.

  • Hochman, Z., Gobbett, D., Holzworth, D., McClelland, T., van Rees, H., Marinoni, O., Garcia, J. N., & Horan, H. (2013). Reprint of “Quantifying yield gaps in rainfed cropping systems: A case study of wheat in Australia.” Field Crops Research, 143, 65–75.

    Article  Google Scholar 

  • Hochman, Z., Gobbett, D., Horan, H., & Garcia, J. N. (2016). Data rich yield gap analysis of wheat in Australia. Field Crops Research, 197, 97–106.

    Article  Google Scholar 

  • Hochman, Z., & Horan, H. (2018). Causes of wheat yield gaps and opportunities to advance the water-limited yield frontier in Australia. Field Crops Research, 228, 20–30.

    Article  Google Scholar 

  • Holzworth, D. P., Huth, N. I., deVoil, P. G., Zurcher, E. J., Herrmann, N. I., McLean, G., Chenu, K., van Oosterom, E. J., Snow, V., Murphy, C., & Moore, A. D. (2014). APSIM–evolution towards a new generation of agricultural systems simulation. Environmental Modelling & Software, 62, 327–350.

    Article  Google Scholar 

  • Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83, 195–213.

    Article  Google Scholar 

  • Isbell, R. (2016). The Australian soil classification. CSIRO Publishing.

    Book  Google Scholar 

  • Jeffrey, S. J., Carter, J. O., Moodie, K. B., & Beswick, A. R. (2001). Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environmental Modelling & Software, 16, 309–330.

    Article  Google Scholar 

  • Lai, Y. R., Orton, T. G., Pringle, M. J., Menzies, N. W., & Dang, Y. P. (2020). Increment-averaged kriging: a comparison with depth-harmonized mapping of soil exchangeable sodium percentage in a cropping region of eastern Australia. Geoderma, 363, 114151.

    Article  CAS  Google Scholar 

  • Lark, R. M., Gillingham, V., Langton, D., & Marchant, B. P. (2020). Boundary line models for soil nutrient concentrations and wheat yield in national-scale datasets. European Journal of Soil Science, 71, 334–351.

    Article  CAS  PubMed  Google Scholar 

  • Leonard, E. (Ed), Rainbow, R. (Ed), Trindall, J. (Ed), Baker, I., Barry, S., Darragh, L., Darnell, R., George, A., Heath, R., Jakku, E., Laurie, A., Lamb, D., Llewellyn, R., Perrett, E., Sanderson, J., Skinner, A., Stollery, T., Wiseman, L., Wood, G., & Zhang, A. (2017). Accelerating precision agriculture to decision agriculture: Enabling digital agriculture in Australia. Cotton Research and Development Corporation.

  • Licker, R., Johnston, M., Foley, J. A., Barford, C., Kucharik, C. J., Monfreda, C., & Ramankutty, N. (2010). Mind the gap: How do climate and agricultural management explain the ‘yield gap’of croplands around the world? Global Ecology and Biogeography, 19, 769–782.

    Article  Google Scholar 

  • Lin, L. I. K. (1989). A concordance correlation coefficient to evaluate reproducibility. Biometrics, 45, 255–268.

    Article  CAS  PubMed  Google Scholar 

  • Lobell, D. B., Cassman, K. G., & Field, C. B. (2009). Crop yield gaps: Their importance, magnitudes, and causes. Annual Review of Environment and Resources, 34, 179–204.

    Article  Google Scholar 

  • Lundberg, S. M., & Lee, S. I. (2017) A unified approach to interpreting model predictions. In Advances in neural information processing systems (pp. 4765–4774).

  • McNally, S. R., Beare, M. H., Curtin, D., Meenken, E. D., Kelliher, F. M., Calvelo Pereira, R., Shen, Q., & Baldock, J. (2017). Soil carbon sequestration potential of permanent pasture and continuous cropping soils in New Zealand. Global Change Biology, 23, 4544–4555.

    Article  PubMed  Google Scholar 

  • Meinshausen, N. (2006). Quantile regression forests. Journal of Machine Learning Research, 7, 983–999.

    Google Scholar 

  • Minty, B., Franklin, R., Milligan, P., Richardson, M., & Wilford, J. (2009). The radiometric map of Australia. Exploration Geophysics, 40, 325–333.

    Article  CAS  Google Scholar 

  • Molnar, C., Bischl, B., & Casalicchio, G. (2018). iml: An R package for Interpretable Machine Learning. JOSS, 3, 786.

    Article  Google Scholar 

  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490, 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, G. C., Rosegrant, M. W., Palazzo, A., Gray, I., Ingersoll, C., Robertson, R., Tokgoz, S., & Zhu, T. (2010) Food security, farming, and climate change to 2050. IFPRI.

  • Neumann, K., Verburg, P. H., Stehfest, E., & Müller, C. (2010). The yield gap of global grain production: A spatial analysis. Agricultural Systems, 103, 316–326.

    Article  Google Scholar 

  • Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences Discussions, 4, 439–473.

    Google Scholar 

  • Penning De Vries, F. W. T., Rabbinge, R., & Groot, J. J. R. (1997). Potential and attainable food production and food security in different regions. Philosophical Transactions of the Royal Society of London Series b: Biological Sciences, 352, 917–928.

    Article  Google Scholar 

  • Probst, P., Wright, M., & Boulesteix, A., (2018) Hyperparameters and tuning strategies for random forest. WileyInterdisciplinary Reviews: Data Mining and Knowledge Discovery. https://doi.org/10.1002/widm.1301

  • R Core Team. (2017). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Roth, G. W. (2014). Australian grown cotton sustainability report. Cotton research and development corporation and cotton Australia https://www.crdc.com.au/publications/australian-grown-cotton-sustainability-report

  • Running, S., Mu, Q., & Zhao, M. (2017). MOD16A2 MODIS/Terra Net Evapotranspiration 8-Day L4 Global 500m SIN Grid V006. NASA EOSDIS Land Processes DAAC. Retrieved January 9, 2020, from https://doi.org/10.5067/MODIS/MOD16A2.006

  • Shatar, T. M., & McBratney, A. B. (2004). Boundary-line analysis of field-scale yield response to soil properties. The Journal of Agricultural Science, 142, 553–560.

    Article  Google Scholar 

  • Tan, Z. X., Lal, R., & Wiebe, K. D. (2005). Global soil nutrient depletion and yield reduction. Journal of Sustainable Agriculture, 26, 123–146.

    Article  Google Scholar 

  • van Ittersum, M. K., Cassman, K. G., Grassini, P., Wolf, J., Tittonell, P., & Hochman, Z. (2013). Yield gap analysis with local to global relevance—A review. Field Crops Research, 143, 4–17.

    Article  Google Scholar 

  • van Ittersum, M. K., & Rabbinge, R. (1997). Concepts in production ecology for analysis and quantification of agricultural input-output combinations. Field Crops Research, 52, 197–208.

    Article  Google Scholar 

  • Viscarra Rossel, R. A., Chen, C., Grundy, M. J., Searle, R., Clifford, D., & Campbell, P. H. (2015). The Australian three-dimensional soil grid: Australia’s contribution to the GlobalSoilMap project. Soil Research, 53, 845–864.

    Article  CAS  Google Scholar 

  • Wang, B., Waters, C., Orgill, S., Gray, J., Cowie, A., Clark, A., & Li Liu, D. (2018). High resolution mapping of soil organic carbon stocks using remote sensing variables in the semi-arid rangelands of eastern Australia. Science of the Total Environment, 630, 367–378.

    Article  CAS  Google Scholar 

  • Webb, R. A. (1972). Use of boundary line in analysis of biological data. The Journal of Horticultural Science & Biotechnology, 47(3), 309–320.

    Article  Google Scholar 

  • Wright, M. N., & Ziegler, A. (2017). ranger: A fast implementation of random forests for high dimensional data in C++ and R. Journal of Statistical Software, 77, 1–17.

    Article  Google Scholar 

  • Wu, W., Yu, Q., You, L., Chen, K., Tang, H., & Liu, J. (2018). Global cropping intensity gaps: Increasing food production without cropland expansion. Land Use Policy, 76, 515–525.

    Article  Google Scholar 

  • Zhao, X., Wang, J., Zhao, D., Li, N., Zare, E., & Triantafilis, J. (2019). Digital regolith mapping of clay across the Ashley irrigation area using electromagnetic induction data and inversion modelling. Geoderma, 346, 18–29.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to show gratitude to the Cotton Research and Development Corporation (CRDC) for funding the research presented here. Precision Cropping Technologies (PCT) were instrumental in providing expert knowledge and access to the large yield mapping datasets. The authors are also grateful to the farm managers, agronomists, and companies for their time and assistance, and for allowing this research to take place on their properties. The authors would also like to thank the Editor and anonymous reviewers for their helpful comments.

Funding

This research was funded by the Cotton Research and Development Corporation (CRDC), and the University of Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick Filippi.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The original article was revised: Figures, Tables placements have been corrected.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filippi, P., Whelan, B.M., Vervoort, R.W. et al. Identifying crop yield gaps with site- and season-specific data-driven models of yield potential. Precision Agric 23, 578–601 (2022). https://doi.org/10.1007/s11119-021-09850-7

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09850-7

Keywords

Navigation