Skip to main content
Log in

A meta-analysis of factors driving the adoption of precision agriculture

  • Published:
Precision Agriculture Aims and scope Submit manuscript

A Correction to this article was published on 13 October 2021

This article has been updated

Abstract

Using a literature pool spanning 23 years, this meta-analysis quantifies the effect of factors underlying the adoption of precision agriculture. Unlike statistical significance, which demonstrates how likely adoption is due to chance, effect size indicates the importance of a factor to adoption. This meta-analysis finds that perceived profitability, consultants and use of a computer factors have a moderate effect. However, the findings should not be regarded as definitive because of issues of sample size and heterogeneity embedded in a number of the reference studies. This latter point is re-enforced by observation of other factors that had a negligible effect on adoption. Whether future studies will provide meaningful policy implications depend on a careful understanding and selection of factors, models, and statistical treatment in relation to decision-making paths and their context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Change history

References

  • Adesina, A. A., & Zinnah, M. M. (1993). Technology characteristics, farmers’ perceptions and adoption decisions: A Tobit model application in Sierra Leone. Agricultural Economics, 9(4), 297–311.

    Google Scholar 

  • Antolini, L. S., Scare, R. F., & Dias, A. (2015). Adoption of precision agriculture technologies by farmers: A systematic literature review and proposition of an integrated conceptual framework. Presented at the International Food and Agribusiness Management Associa- tion (IFAMA) Conference, St. Paul, MN, 14–17 June 2015. https://www.ifama.org/resources/files/2015-Conference/1259_paper_Antonlini_precision.pdf

  • Asare, E., & Segarra, E. (2018). Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precision Agriculture, 19(6), 992–1010.

    Google Scholar 

  • Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520.

    Google Scholar 

  • Balogh, P., Bai, A., Czibere, I., Kovách, I., Fodor, L., Bujdos, Á., Sulyok, D., Gabnai, Z., & Birkner, Z. (2021). Economic and social barriers of precision farming in Hungary. Agronomy, 11(6), 1112.

    Google Scholar 

  • Banerjee, S., Martin, S. W., Roberts, R. K., Larkin, S. L., Larson, J. A., Paxton, K. W., et al. (2008). A binary logit estimation of factors affecting adoption of GPS guidance systems by cotton producers. Journal of Agricultural and Applied Economics, 40, 345–355.

    Google Scholar 

  • Barnes, A. P., Soto, I., Eory, V., Beck, B., Balafoutis, A., Sánchez, B., et al. (2019). Exploring the adoption of precision agricultural technologies: A cross regional study of EU farmers. Land Use Policy, 80, 163–174.

    Google Scholar 

  • Baumgart-Getz, A., Prokopy, L. S., & Floress, K. (2012). Why farmers adopt best management practice in the United States: A meta-analysis of the adoption literature. Journal of Environmental Management, 96(1), 17–25.

    PubMed  Google Scholar 

  • Borenstein, M. (2005). Software for publication bias. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments. Wiley

  • Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Effect sizes based on means. Wiley.

    Google Scholar 

  • Borenstein, M., Hedges, L. V., Higgins, J. P., & Rothstein, H. R. (2010). A basic introduction to fixed-effect and random-effects models for meta-analysis. Research Synthesis Methods, 1(2), 97–111.

    PubMed  Google Scholar 

  • Bramer, W. M., Rethlefsen, M. L., Kleijnen, J., & Franco, O. H. (2017). Optimal database combinations for literature searches in systematic reviews: A prospective exploratory study. Systematic Reviews, 6(1), 245.

    PubMed  PubMed Central  Google Scholar 

  • Cary, J. W., & Wilkinson, R. L. (1997). Perceived profitability and farmers ‘conservation behaviour. Journal of Agricultural Economics, 48(1–3), 13–21.

    Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (1998). Socioeconomic profiles of early adopters of precision agriculture technologies. Journal of Agribusiness, 16, 151–168.

    Google Scholar 

  • Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

    Google Scholar 

  • D’Antoni, J. M., Mishra, A. K., & Joo, H. (2012). Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Computers and Electronics in Agriculture, 87, 121–128.

    Google Scholar 

  • de Oca Munguia, O. M., Pannell, D. J., Llewellyn, R., & Stahlmann-Brown, P. (2021). Adoption pathway analysis: Representing the dynamics and diversity of adoption for agricultural practices. Agricultural Systems, 191, 103173

  • DeLay, N. D., Thompson, N. M., & Mintert, J. R. (2020). Precision agriculture technology adoption and technical efficiency. Journal of Agricultural Economics. https://doi.org/10.1111/1477-9552.12440

    Article  Google Scholar 

  • Ellis, P. D. (2010). The essential guide to effect sizes: Statistical power, meta-analysis, and the interpretation of research results. Cambridge University Press.

    Google Scholar 

  • European Parliament (2016). Precision agriculture and the future of farming in Europe. Scientific Foresight Unit PE581.892. European Parliamentary Research Service

  • Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-DeBoer, J., & Sorensen, C. G. (2005). Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture, 6(2), 121–141.

    Google Scholar 

  • Gardezi, M., & Bronson, K. (2019). Examining the social and biophysical determinants of US Midwestern corn farmers’ adoption of precision agriculture. Precision Agriculture, 1–20

  • Glover, D., Sumberg, J., Ton, G., Andersson, J., & Badstue, L. (2019). Rethinking technological change in smallholder agriculture. Outlook on Agriculture, 48(3), 169–180.

    Google Scholar 

  • Groher, T., Heitkämper, K., Walter, A., Liebisch, F., & Umstätter, C. (2020). Status quo of adoption of precision agriculture enabling technologies in Swiss plant production. Precision Agriculture, 21, 1327–1350.

    Google Scholar 

  • Guo, Q., Ola, O., & Benjamin, E. O. (2020). Determinants of the adoption of sustainable intensification in southern African farming systems: A meta-analysis. Sustainability, 12(8), 3276.

    Google Scholar 

  • Hedges, L. V. (1981). Distribution theory for Glass’s estimator of effect size and related estimators. Journal of Educational Statistics, 6(2), 107–128.

    Google Scholar 

  • Higgins, J. P. T., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions version 5.1. 0 [updated March 2011]. The Cochrane Collaboration, 2011

  • Higgins, J. P., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane handbook for systematic reviews of interventions. Wiley.

    Google Scholar 

  • Higgins, J. P., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses. British Medical Journal, 327, 557–560.

    PubMed  PubMed Central  Google Scholar 

  • Isgin, T., Bilgic, A., Forster, D. L., & Batte, M. T. (2008). Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture, 62(2), 231–242.

    Google Scholar 

  • Khanna, M. (2001). Sequential adoption of site-specific technologies and its implications for nitrogen productivity: A double selectivity model. American Journal of Agricultural Economics, 83(1), 35–51.

    Google Scholar 

  • Kline, R. B. (2004). Beyond significance testing: Reforming data analysis methods in behavioral research (p. 95). American Psychological Association.

    Google Scholar 

  • Knowler, D., & Bradshaw, B. (2007). Farmers’ adoption of conservation agriculture: A review and synthesis of recent research. Food Policy, 32(1), 25–48.

    Google Scholar 

  • Kolady, D. E., Van der Sluis, E., Uddin, M. M., & Deutz, A. P. (2021). Determinants of adoption and adoption intensity of precision agriculture technologies: Evidence from South Dakota. Precision Agriculture, 22(3), 689–710.

    Google Scholar 

  • Lambert, D. M., English, B. C., Harper, D. C., Larkin, S. L., Larson, J. A., Mooney, D. F., et al. (2014). Adoption and frequency of precision soil testing in cotton production. Journal of Agricultural and Resource Economics, 39(1), 106–123.

    Google Scholar 

  • Lambert, D. M., Paudel, K. P., & Larson, J. A. (2015). Bundled adoption of precision agriculture technologies by cotton producers. Journal of Agricultural and Resource Economics, 40(2), 325–345.

    Google Scholar 

  • Larson, J. A., Roberts, R. K., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., et al. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture, 9(4), 195–208.

    Google Scholar 

  • Lee, C., Strong, R., & Dooley, K. (2021). Analyzing precision agriculture adoption across the globe: A systematic review of scholarship from 1999–2020. https://doi.org/10.20944/preprints202106.0625.v1.

  • Lee, J., Nazki, H., Baek, J., Hong, Y., & Lee, M. (2020). Artificial intelligence approach for tomato detection and mass estimation in precision agriculture. Sustainability, 12(21), 9138.

    Google Scholar 

  • Lowenberg-DeBoer, J. 1996. Economics of precision farming: Payoff in the future. Purdue University, IN. http://pasture.-ecn.purdue.edu/~mmorgan/PFI/pfiecon.html

  • Lowenberg‐DeBoer, J., Behrendt, K., Ehlers, M. H., Dillon, C., Gabriel, A., Huang, I. Y., Kumwenda, I., Mark, T., Meyer‐Aurich, A., Milics, G., & Olagunju, K. O. (2021). Lessons to be learned in adoption of autonomous equipment for field crops. Applied Economic Perspectives and Policy. https://doi.org/10.1002/aepp.13177

    Article  Google Scholar 

  • Michels, M., Bonke, V., & Musshoff, O. (2020a). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21(4), 1209–1226.

    Google Scholar 

  • Michels, M., Fecke, W., Feil, J.-H., Musshoff, O., Pigisch, J., & Krone, S. (2020b). Smartphone adoption and use in agriculture: Empirical evidence from Germany. Precision Agriculture, 21(2), 403–425.

    Google Scholar 

  • Michels, M., von Hobe, C. F., von Ahlefeld, P. J. W., & Musshoff, O. (2021). The adoption of drones in German agriculture: A structural equation model. Precision Agriculture. https://doi.org/10.1007/s11119-021-09809-8

    Article  Google Scholar 

  • Mitchell, S., Weersink, A., & Bannon, N. (2020). Adoption barriers for precision agriculture technologies in Canadian crop production. Canadian Journal of Plant Science, 101(3), 412–416.

    Google Scholar 

  • Nair, S., Wang, C., Eduardo, S., Belasco, E., Larson, J., Velandia, M., et al. (2011). Adoption of precision agriculture for cotton in the Southern United States. Journal of Agribusiness, 29, 221–241.

    Google Scholar 

  • National Research Council. (1997). Precision agriculture in the 21st century. National Academies Press.

  • Nowak, B. (2021). Precision agriculture: where do we stand? A review of the adoption of precision agriculture technologies on field crops farms in developed countries. Agricultural Research, https://doi.org/10.1007/s40003-021-00539-x

  • Pae, C. U. (2015). Why systematic review rather than narrative review? Psychiatry Investigation, 12(3), 417–419.

    PubMed  PubMed Central  Google Scholar 

  • Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20(6), 1292–1316.

    Google Scholar 

  • Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18(5), 701–716.

    Google Scholar 

  • Popay, J., Roberts, H., Sowden, A., Petticrew, M., Arai, L., Rodgers, M., Britten, N., Roen, K., & Duffy, S. (2006). Guidance on the conduct of narrative synthesis in systematic reviews. A product from the ESRC methods programme Version, 1, b92

  • Pedersen, S. M., & Lind, K. M. (2017). Precision agriculture–from mapping to site-specific application. In Precision Agriculture: Technology and Economic Perspectives (pp. 1–20). Springer

  • Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69.

    Google Scholar 

  • Pivoto, D., Barham, B., Dabdab, P., Zhang, D., & Talamin, E. (2019). Factors influencing the adoption of smart farming by Brazilian grain farmers. International Food and Agribusiness Management Review, 22, 571–588.

    Google Scholar 

  • Rahm, M. R., & Huffman, W. E. (1984). The adoption of reduced tillage: The role of human capital and other variables. American Journal of Agricultural Economics, 66(4), 405–413.

    Google Scholar 

  • Robert, P. C. (2002). Precision agriculture: a challenge for crop nutrition management. In Progress in Plant Nutrition: Plenary Lectures of the XIV International Plant Nutrition Colloquium (pp. 143–149). Springer

  • Roberts, R. K., English, B. C., & Larson, J. A. (2002). Factors affecting the location of precision farming technology adoption in Tennessee. Journal of Extension, 40(1), 12–21.

    Google Scholar 

  • Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., et al. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 36, 143–158.

    Google Scholar 

  • Robertson, M., Kirkegaard, J., Rebetzke, G., Llewellyn, R., & Wark, T. (2016). Prospects for yield improvement in the Australian wheat industry: A perspective. Food and Energy Security, 5(2), 107–122.

    Google Scholar 

  • Robertson, M., Llewellyn, R., Mandel, R., Lawes, R., Bramley, R., Swift, L., et al. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agriculture, 13(2), 181–199.

    Google Scholar 

  • Ruzzante, S., Labarta, R., & Bilton, A. (2021). Adoption of agricultural technology in the developing world: A meta-analysis of the empirical literature. World Development, 146, 105599

  • Santos Valle, S., & Kienzle, J. 2020. Agriculture 4.0 – Agricultural robotics and automated equipment for sustainable crop production. Integrated Crop Management Vol. 24. Rome, FAO

  • Schimmelpfennig, D., & Ebel, R. (2016). Sequential adoption and cost savings from precision agriculture. Journal of Agricultural and Resource Economics, 41(1), 97–115.

    Google Scholar 

  • Shamseer, L., Moher, D., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., & Stewart, L. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 349, g7647

  • Shockley, J. M., Dillon, C. R., & Stombaugh, T. S. (2011). A whole farm analysis of the influence of auto-steer navigation on net returns, risk, and production practices. Journal of Agricultural and Applied Economics, 43(1), 57–75.

    Google Scholar 

  • Steele, D. (2017). Analysis of precision agriculture adoption & barriers in Western Canada. https://www.realagriculture.com/wp-content/uploads/2017/04/Final-Report-Analysis-of-Precision-Agriculture-Adoption-and-Barriers-in-western-Canada-April-2017.pdf

  • Sterne, J. A., Becker, B. J., & Egger, M. (2005). The funnel plot. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments. Wiley

  • Sterne, J. A., & Egger, M. (2005). Regression methods to detect publication and other bias in meta-analysis. In H. R. Rothstein, A. J. Sutton, & M. Borenstein (eds.), Publication bias in meta-analysis: Prevention, assessment, and adjustments. Wiley

  • Sullivan, G. M., & Feinn, R. (2012). Using effect size—Or why the P value is not enough. Journal of Graduate Medical Education, 4(3), 279–282.

    PubMed  PubMed Central  Google Scholar 

  • Tamirat, T. W., Pedersen, S. M., & Lind, K. M. (2018). Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, 68(4), 349–357

  • Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730.

    Google Scholar 

  • Thompson, N. M., Bir, C., Widmar, D. A., & Mintert, J. R. (2019). Farmer perceptions of precision agriculture technology benefits. Journal of Agricultural and Applied Economics, 51(1), 142–163.

    Google Scholar 

  • USDA (United States Department of Agriculture) (2019). Agricultural resources and environmental indicators, 2019. In D. Hellerstein, D. Vilorio, & M. Ribaudo (Eds.), Economic Information Bulletin (Vol. Number 208): United States Department of Agriculture

  • Valentine, J. C., Pigott, T. D., & Rothstein, H. R. (2010). How many studies do you need? A primer on statistical power for meta-analysis. Journal of Educational and Behavioral Statistics, 35(2), 215–247.

    Google Scholar 

  • Vecchio, Y., Agnusdei, G. P., Miglietta, P. P., & Capitanio, F. (2020). Adoption of precision farming tools: The case of Italian farmers. International Journal of Environmental Research and Public Health, 17(3), 869–885.

    PubMed Central  Google Scholar 

  • von Hippel, P. T. (2015). The heterogeneity statistic I2 can be biased in small meta-analyses. BMC Medical Research Methodology, 15(1), 1–8.

    Google Scholar 

  • Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B., Larkin, S. L., et al. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics, 33(3), 428–448.

    Google Scholar 

  • Walton, J. C., Larson, J. A., Roberts, R. K., Lambert, D. M., English, B. C., Larkin, S. L., et al. (2010). Factors influencing farmer adoption of portable computers for site-specific management: A case study for cotton production. Journal of Agricultural and Applied Economics, 42, 193–209.

    Google Scholar 

  • Wiebold, W. J. Sudduth, K. A. Davis, J. G. Shannon, D. K., & Kitchen, N. R. (1998). Determining barriers to adoption and research needs of precision agriculture, Report to the North Central Soybean Research Program, Available through Missouri Precision Agriculture Center (MPAC). http://www.fse.missouri.edu/mpac/pubs/parpt.pdf

  • Xie, H., & Huang, Y. (2021). Influencing factors of farmers' adoption of pro-environmental agricultural technologies in China: Meta-analysis. Land Use Policy, 109, 105622

Download references

Acknowledgements

The authors thank the editor and anonymous reviewers for their constructive comments on an earlier version of this paper. This work on meta-analysis also benefited from discussions with Jacqueline Ho of RCSI UCD Malaysia Campus.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yeong Sheng Tey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tey, Y.S., Brindal, M. A meta-analysis of factors driving the adoption of precision agriculture. Precision Agric 23, 353–372 (2022). https://doi.org/10.1007/s11119-021-09840-9

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-021-09840-9

Keywords

Navigation