Georeferenced tractor wheel slip data for prediction of spatial variability in soil physical properties

Abstract

The upcoming technological breakthrough in the cropping system will offer a more detailed insight into soil-to-plant, man-to-soil, and man-to-plant impacts, thus improving the forecasting and ensuring more efficient in-field management. This study presents various on-the-go sensing procedures which were conducted in order to evaluate the quality of spatial estimations of soil physical properties such as soil compaction, soil moisture content, bulk density and texture. Standard statistical tools showed high positive correlations between soil specific resistance and soil compaction (R2 = .75), soil electromagnetic conductivity and moisture content (R2 = .72) and tractor wheel slip and soil compaction (R2 = .64). Variogram modeling of spatial autocorrelation gave the highest prediction error for tillage resistance (9.85%), followed by cone index (4.49%), moisture content (3.7%), bulk density (1.39%), clay + silt content (.98%), soil electromagnetic conductivity (.95%) and the least error was obtained for tractor wheel slip (.58%). The Central Composite Design (CCD) analysis confirmed significant contribution of soil compaction in the modeling of the specific soil resistance and tractor wheel slip, while soil moisture content and fine particle (clay + silt) content had a major impact on soil electromagnetic conductivity measurement. Soil bulk density had considerable importance in CCD modeling of tractor wheel slip.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Agüera, J., Carballido, J., Gil, J., Gliever, C. J., & Perez-Ruiz, M. (2013). Design of a soil cutting resistance sensor for application in site-specific tillage. Sensors, 13(5), 5945–5957. https://doi.org/10.3390/s130505945.

    Article  PubMed  Google Scholar 

  2. Arvidsson, J., & Keller, T. (2011). Comparing penetrometer and shear vane measurements with measured and predicted mouldboard plough draught in a range of Swedish soils. Soil and Tillage Research, 111(2), 219–223. https://doi.org/10.1016/j.still.2010.10.005.

    Article  Google Scholar 

  3. Bai, W., Kong, L., & Guo, A. (2013). Effects of physical properties on electrical conductivity of compacted lateritic soil. Journal of Rock Mechanics and Geotechnical Engineering, 5(5), 406–411. https://doi.org/10.1016/j.jrmge.2013.07.003.

    Article  Google Scholar 

  4. Bielders, C. L., & Michels, K. (2006). On-farm evaluation of ridging and residue management options in a Sahelian millet-cowpea intercrop. 2. Crop development. Soil Use and Management, 18(4), 309–315. https://doi.org/10.1111/j.1475-2743.2002.tb00246.x.

    Article  Google Scholar 

  5. Brevik, E. (2012). Analysis of the representation of soil map units using a common apparent electrical conductivity sampling design for the mapping of soil properties. Soil Horizons, 53, 32–37.

    Article  Google Scholar 

  6. Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1–3), 11–43. https://doi.org/10.1016/j.compag.2004.10.005.

    Article  Google Scholar 

  7. Cui, J. D. (2010). Optimization of medium for phenylalanine ammonia lyase production in E. coli using response surface methodology. Korean Journal of Chemical Engineering, 27(1), 174–178. https://doi.org/10.1007/s11814-009-0234-3.

    CAS  Article  Google Scholar 

  8. Cui, J. D., Cui, L., Jia, S., Su, Z., & Zhang, S. (2016). Hybrid cross-linked lipase aggregates with magnetic nanoparticles: A robust and recyclable biocatalysis for the epoxidation of oleic acid. Journal of Agricultural and Food Chemistry, 64, 7179–7187. https://doi.org/10.1021/acs.jafc.6b01939.

    CAS  Article  PubMed  Google Scholar 

  9. Curran, P., West, S., & Finch, J. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1(1), 16–29. https://doi.org/10.1037/1082-989X.1.1.16.

    Article  Google Scholar 

  10. Davies, B., Finney, J., & Richardson, S. (1973). Relative effects of tractor weight and wheel-slip in causing soil compaction. European Journal of Soil Science, 24(3), 399–406. https://doi.org/10.1111/j.1365-2389.1973.tb00775.x.

    Article  Google Scholar 

  11. Desbiolles, J. M. A., Godwin, R. J., Kilgour, J., & Blackmore, B. S. (1999). Prediction of tillage implement draught using cone penetrometer data. Journal of Agricultural Engineering Research, 73(1), 65–76. https://doi.org/10.1006/jaer.1998.0394.

    Article  Google Scholar 

  12. Domsch, H., & Giebel, A. (2004). Estimation of soil textural features from soil electrical conductivity recorded using the EM38. Precision Agriculture, 5(4), 389–409. https://doi.org/10.1023/B:PRAG.0000040807.18932.80.

    Article  Google Scholar 

  13. Fortes, R., Millán, S., Prieto, M. H., & Campillo, C. (2015). A methodology based on apparent electrical conductivity and guided soil samples to improve irrigation zoning. Precision Agriculture, 16(4), 441–454. https://doi.org/10.1007/s11119-015-9388-7.

    Article  Google Scholar 

  14. Fountas, S., Paraforos, D., Cavalaris, C., Karamoutis, C., Gemtos, T. A., Abu-Khalaf, N., et al. (2013). A five-point penetrometer with GPS for measuring soil compaction variability. Computers and Electronics in Agriculture, 96, 109–116. https://doi.org/10.1016/j.compag.2013.04.018.

    Article  Google Scholar 

  15. Godwin, R. J., O’Dogherty, M. J., Saunders, C., & Balafoutis, A. T. (2007). A force prediction model for mouldboard ploughs incorporating the effects of soil characteristic properties, plough geometric factors and ploughing speed. Biosystems Engineering, 97(1), 117–129. https://doi.org/10.1016/j.biosystemseng.2007.02.001.

    Article  Google Scholar 

  16. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. New York, NY, USA: Oxford University Press.

    Google Scholar 

  17. Hanquet, B., Sirjacobs, D., Destain, M. F., Frankinet, M., & Verbrugge, J. C. (2004). Analysis of soil variability measured with a soil strength sensor. Precision Agriculture, 5(3), 227–246. https://doi.org/10.1023/B:PRAG.0000032763.54104.b4.

    Article  Google Scholar 

  18. Hayhoe, H. N., Lapen, D. R., & Curnoe, W. E. (2002). Measurements of mouldboard plow draft: I. Spectrum analysis and filtering. Precision Agriculture, 3(3), 225–236. https://doi.org/10.1023/A:1015502924508.

    Article  Google Scholar 

  19. Hemmat, A., Adamchuk, V. I., & Jasa, P. (2008). Use of an instrumented disc coulter for mapping soil mechanical resistance. Soil and Tillage Research, 98(2), 150–163. https://doi.org/10.1016/j.still.2007.11.003.

    Article  Google Scholar 

  20. Hemmat, A., Binandeh, A. R., Ghaisari, J., & Khorsandi, A. (2013). Development and field testing of an integrated sensor for on-the-go measurement of soil mechanical resistance. Sensors and Actuators A: Physical, 198, 61–68. https://doi.org/10.1016/j.sna.2013.04.027.

    CAS  Article  Google Scholar 

  21. Hu, W., Schoenau, J. J., & Si, B. C. (2015). Representative sampling size for strip sampling and number of required samples for random sampling for soil nutrients in direct seeded fields. Precision Agriculture, 16(4), 385–404. https://doi.org/10.1007/s11119-014-9384-3.

    Article  Google Scholar 

  22. ISPA Official Definition of Precision Agriculture. (2019). ISPA Newsletter. https://ispag.org/site/newsletter/?id=90.

  23. Jamieson, P. D., Porter, J. R., & Wilson, D. R. (1991). A test of the computer simulation model ARCWHEAT1 on wheat crops grown in New Zealand. Field Crops Research, 27(4), 337–350. https://doi.org/10.1016/0378-4290(91)90040-3.

    Article  Google Scholar 

  24. Johnson, C. K., Eskridge, K. M., & Corwin, D. L. (2005). Apparent soil electrical conductivity: Applications for designing and evaluating field-scale experiments. Computers and Electronics in Agriculture, 46(1–3), 181–202. https://doi.org/10.1016/j.compag.2004.12.001.

    Article  Google Scholar 

  25. Kerry, R., Oliver, M. A., & Frogbrook, Z. L. (2010). Sampling in precision agriculture. In M. A. Oliver (Ed.), Geostatistical applications for precision agriculture (pp. 35–63). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-90-481-9133-8_2.

    Google Scholar 

  26. Khalilian, A., Han, Y. J., Marshall, M. W., Gorucu, S., Abbaspour-Gilandeh, Y., & Kirk, K. R. (2014). Evaluation of the Clemson instrumented subsoiler shank in coastal plain soils. Computers and Electronics in Agriculture, 109, 46–51. https://doi.org/10.1016/j.compag.2014.09.002.

    Article  Google Scholar 

  27. Kostić, M., Rakić, D., Ličen, H., & Malinović, N. (2014). Design and construction of three point hitch device for measuring draft of tillage implement—data acquisition and post processing analysis. Journal of Food, Agriculture and Environment, 12(2), 1300–1307. https://doi.org/10.1234/4.2014.5333.

    Article  Google Scholar 

  28. Krajčo, J. (2007, September). Detection of soil compaction using soil electrical conductivity (Master Thesis). Cranfield University, School of Applied Sciences, Cranfield, UK. Retrieved July 12, 2020, from http://hdl.handle.net/1826/2346.

  29. Kumar, A. A., Tewari, V. K., & Nare, B. (2016). Embedded digital draft force and wheel slip indicator for tillage research. Computers and Electronics in Agriculture, 127, 38–49. https://doi.org/10.1016/j.compag.2016.05.010.

    Article  Google Scholar 

  30. Lapen, D. R., Hayhoe, H. N., Topp, G. C., & Gregorich, E. G. (2002). Measurements of mouldboard plow draft: II. Draft–soil–crop and yield–draft associations. Precision Agriculture, 3(3), 237–257. https://doi.org/10.1023/A:1015519408578.

    Article  Google Scholar 

  31. Lapen, D. R., Topp, G. C., Hayhoe, H. N., Gregorich, E. G., & Curnoe, W. E. (2001). Stochastic simulation of soil strength/compaction and assessment of corn yield risk using threshold probability patterns. Geoderma, 104(3), 325–343. https://doi.org/10.1016/S0016-7061(01)00088-X.

    Article  Google Scholar 

  32. Lawes, R. A., & Bramley, R. G. V. (2012). A simple method for the analysis of on-farm strip trials. Agronomy Journal, 104(2), 371–377. https://doi.org/10.2134/agronj2011.0155.

    Article  Google Scholar 

  33. Ma, R., McBratney, A., Whelan, B., Minasny, B., & Short, M. (2011). Comparing temperature correction models for soil electrical conductivity measurement. Precision Agriculture, 12(1), 55–66. https://doi.org/10.1007/s11119-009-9156-7.

    Article  Google Scholar 

  34. Mazeiro, J. V. G., Mialhe, L. G., Corrêa, I. M., Yanai, K., & De Menezes, J. F. (1986). Effects of a tractor driving wheel slip on soil compaction. Bragantia, 56(1), 191–197.

    Article  Google Scholar 

  35. Oliver, M. A. (2010). An overview of geostatistics and precision agriculture. In M. A. Oliver (Ed.), Geostatistical applications for precision agriculture (pp. 1–34). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-90-481-9133-8_1.

    Google Scholar 

  36. Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56–69. https://doi.org/10.1016/j.catena.2013.09.006.

    Article  Google Scholar 

  37. Onwualu, A. (1998). Draught and vertical forces obtained from dynamic soil cutting by plane tillage tools. Soil and Tillage Research, 48(4), 239–253. https://doi.org/10.1016/S0167-1987(98)00127-5.

    Article  Google Scholar 

  38. Rodrigues, F. A., Bramley, R. G. V., & Gobbett, D. L. (2015b). Proximal soil sensing for Precision Agriculture: Simultaneous use of electromagnetic induction and gamma radiometrics in contrasting soils. Geoderma, 243–244, 183–195. https://doi.org/10.1016/j.geoderma.2015.01.004.

    Article  Google Scholar 

  39. Rodrigues, Jr., F. A., Ortiz-Monasterio, I., Zarco-Tejada, P. J., Shulthess, U., & Gérard, B. (2015). High resolution remote and proximal sensing to assess low and high yield areas in a wheat field. In J. V. Stafford (Ed.), Precision agriculture ’15, Proceedings of the 10th European conference on precision agriculture (pp. 191–197). Wageningen, The Netherlands: Wageningen Academic Publishers. https://doi.org/10.3920/978-90-8686-814-8_23.

  40. Rossel, R. A. V., & McBratney, A. B. (1998). Soil chemical analytical accuracy and costs: Implications from precision agriculture. Australian Journal of Experimental Agriculture, 38(7), 765. https://doi.org/10.1071/EA97158.

    Article  Google Scholar 

  41. Rudolph, S., van der Kruk, J., von Hebel, C., Ali, M., Herbst, M., Montzka, C., et al. (2015). Linking satellite derived LAI patterns with subsoil heterogeneity using large-scale ground-based electromagnetic induction measurements. Geoderma, 241–242, 262–271. https://doi.org/10.1016/j.geoderma.2014.11.015.

    Article  Google Scholar 

  42. Sheets, K. R., & Hendrickx, J. M. H. (1995). Noninvasive soil water content measurement using electromagnetic induction. Water Resources Research, 31(10), 2401–2409. https://doi.org/10.1029/95WR01949.

    Article  Google Scholar 

  43. Singh, G., Williard, K., & Schoonover, J. (2016). Spatial relation of apparent soil electrical conductivity with crop yields and soil properties at different topographic positions in a small agricultural watershed. Agronomy, 6(4), 57. https://doi.org/10.3390/agronomy6040057.

    CAS  Article  Google Scholar 

  44. Siqueira, G. M., Dafonte, J. D., Lema, J. B., Valcárcel Armesto, M., & e Silva, Ê. F. F. (2014). Using soil apparent electrical conductivity to optimize sampling of soil penetration resistance and to improve the estimations of spatial patterns of soil compaction. The Scientific World Journal, 2014, 1–13. https://doi.org/10.1155/2014/269480.

    Article  Google Scholar 

  45. Standard ASABE. (2011). ASAE S313.3: Soil Cone Penetrometer. St Joseph, MI, USA: American Society of Agricultural and Biological Engineers.

  46. Strudley, M., Green, T., & Ascoughii, J. (2008). Tillage effects on soil hydraulic properties in space and time: State of the science. Soil and Tillage Research, 99(1), 4–48. https://doi.org/10.1016/j.still.2008.01.007.

    Article  Google Scholar 

  47. Sudduth, K. A., Drummond, S. T., & Kitchen, N. R. (2001). Accuracy issues in electromagnetic induction sensing of soil electrical conductivity for precision agriculture. Computers and Electronics in Agriculture, 31(3), 239–264. https://doi.org/10.1016/S0168-1699(00)00185-X.

    Article  Google Scholar 

  48. Summers, J. D., Khalilian, A., & Batchelder, D. G. (1986). Draft relationships for primary tillage in Oklahoma soils. Transactions of the ASAE, 29(1), 37–39. https://doi.org/10.13031/2013.30097.

    Article  Google Scholar 

  49. Tebrügge, F., & Diring, R. A. (1999). Reducing tillage intensity—a review of results from a long-term study in Germany. Soil and Tillage Research, 53, 15–28. https://doi.org/10.1016/S0167-1987(99)00073-2.

    Article  Google Scholar 

  50. Triantafilis, J., & Lesch, S. M. (2005). Mapping clay content variation using electromagnetic induction techniques. Computers and Electronics in Agriculture, 46(1–3), 203–237. https://doi.org/10.1016/j.compag.2004.11.006.

    Article  Google Scholar 

  51. U.S. Department of Agriculture (USDA). (2014). National resources conservation service: Soils. Soil texture calculator. Retrieved August 15, 2018, from http://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_054167.

  52. Ünal, İ, Kabaş, Ö., & Sözer, S. (2020). Real-time electrical resistivity measurement and mapping platform of the soils with an autonomous robot for precision farming applications. Sensors, 20(1), 251. https://doi.org/10.3390/s20010251.

    Article  Google Scholar 

  53. van Bergeijk, J., Goense, D., & Speelman, L. (2001). Soil tillage resistance as a tool to map soil type differences. Journal of Agricultural Engineering Research, 79(4), 371–387. https://doi.org/10.1006/jaer.2001.0709.

    Article  Google Scholar 

  54. Zhang, B. Z., Cui, J. D., Zhao, G. X., & Jia, S. R. (2010). Modeling and optimization of phenylalanine ammonia lyase stabilization in recombinant Escherichia coli for the continuous synthesis of l-phenylalanine on the statistical-based experimental designs. Journal of Agricultural and Food Chemistry, 58, 2795–2800. https://doi.org/10.1021/jf9036744.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

The present work benefits from the financial support of the Ministry of Education, Science and Technological Development of the Republic of Serbia and European Union.

Funding

This research was funded by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant Number: 451-03-9/2021-14/200032 and 451-03-68/2020-14/200125) and European Union (Project: Centre of Excellence for Advanced Technologies in Sustainable Agriculture and Food Security—ANTARES, GA Number 739570).

Author information

Affiliations

Authors

Contributions

MK was responsible for the project administration, conceptualization, data acquisition and formal analysis, methodology, software, and writing—original draft. MR was responsible for funding acquisition, investigation, resources, and visualization. NLJ was responsible for the supervision and funding acquisition. BI was responsible for the supervision. MR was responsible for funding acquisition and supervision. DB was responsible for the supervision and validation, and ND was responsible for the supervision and statistical analysis. All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Marko Kostić.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 17 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kostić, M., Rajković, M., Ljubičić, N. et al. Georeferenced tractor wheel slip data for prediction of spatial variability in soil physical properties. Precision Agric (2021). https://doi.org/10.1007/s11119-021-09805-y

Download citation

Keywords

  • Sensors
  • On-the-go measurement
  • Wheel slip
  • Soil properties
  • Central composite design