Potential challenges to precision agriculture technologies development in Ghana: scientists’ and cocoa extension agents’ perspectives

Abstract

This paper examines the prospects and challenges of developing and implementing precision agricultural technologies (PATs) in cocoa production in Ghana. A census of cocoa research scientists and a survey of cocoa extension agents (CEAs) in Ghana were taken. Five major challenges they perceived to pose serious challenges to the development and implementation of future PATs were: (a) farmer-demographic characteristics, (b) environmental, (c) educational, (d) economic, and (e) technical challenges. The main farmer-demographic characteristics expected to pose serious challenges to precision agriculture development and adoption in Ghana were age of farmers, farmers’ low level of education, farmers’ lack of computer knowledge, and subsistence farmers with low income. The most important environmental challenges expected to pose substantial challenge to PAT development and adoption were: lack of accessible road to farms, vegetation (mostly forest/trees) posing a challenge to the movement of some precision agriculture (PA) machinery, and undulating nature of topography of cocoa fields. Both scientists and CEAs perceived that the overall challenges to PATs development and implementation in Ghana would be substantial. There were no significant differences between scientists’ and CEAs’ perceived challenges anticipated in the development and implementation of PATs at 0.05 alpha level. This means that the overall prospect of developing and implementing PA in cocoa production in Ghana was perceived to be rather low. The study recommended, among others, the need for stakeholders to set up research unit purposely to develop PA technologies and methods taking into consideration the social-demographic and economic situation of farmers as well as environmental factors—such as soil type, vegetation and topography of arable cocoa lands in Ghana. On-station trials of PATs should begin with these research units and later on-farm trials replicated on farmers’ farm. Moreover, initial targets and training of farmers should focus on literate farmers who are more likely to comprehend and apply features of PATs.

This is a preview of subscription content, access via your institution.

Fig. 1

Source: COCOBOD, 2016)

References

  1. Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computers and Electronics in Agriculture, 48(3), 256–271.

    Article  Google Scholar 

  2. Agrifood (2015). Precision farming technology. Retrieved from http://www.agrifoodatp.ac.uk/aatp/courses/crops/precision-farming-technology.aspx.

  3. Anderson, M. (Ed.). (1998). Agricultural resources & environmental indicators. Washington, DC, USA: Department of Agriculture, Economic Research Service.

    Google Scholar 

  4. Asare, E., & Segarra, E. (2018). Adoption and extent of adoption of georeferenced grid soil sampling technology by cotton producers in the southern US. Precision Agriculture, 19(6), 992–1010. https://doi.org/10.1007/s11119-018-9568-3

    Article  Google Scholar 

  5. Aune, J. B., Coulibaly, A., & Giller, K. E. (2017). Precision farming for increased land and labour productivity in semi-arid West Africa. A review. Agronomy for Sustainable Development, 37(3), 1–10.

    Article  CAS  Google Scholar 

  6. Baudron, F., Sims, B., Justice, S., Kahan, D. G., Rose, R., Mkomwa, S., ... Gérard, B. (2015). Re-examining appropriate mechanization in Eastern and Southern Africa: two-wheel tractors, conservation agriculture, and private sector involvement. Food Security7(4), 889–904.

  7. Bjerke, B., Ketchum, J. W., & Walton, J. R. (2008). U.S. Patent No. 7,372,896. Washington, DC, USA: Patent and Trademark Office.

    Google Scholar 

  8. Bland, J. M., & Altman, D. G. (1997). Notes on Cronbach’s alpha. BMJ, 314, 572.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Bongiovanni, R., & Lowenberg-DeBoer, J. (2005). Precision agriculture in Argentina. 3° Simpósio Internacional de Agricultura de Precisão, (1).

  10. Bosompem, M. (2019). Predictors of Ex-Ante adoption of precision agriculture technologies by cocoa farmers in Ghana. Journal of Sustainable Development in Africa, 21(4), 89–110.

  11. Bosompem, M., Kwarteng, J. A., & Ntifo-siaw, E. (2011). Towards the implementation of precision agriculture in cocoa production in Ghana: Evidence from the cocoa high technology programme in the eastern region of Ghana. Journal for Agricultural Research and Development, 10(1), 11–17.

    Google Scholar 

  12. Carifio, J., & Perla, R. J. (2007). Ten common misunderstandings, misconceptions, persistent myths and urban legends about Likert scales and likert response formats and their antidotes. Journal of Social Sciences, 3(3), 106–116. https://doi.org/10.3844/jssp.2007.106.116

    Article  Google Scholar 

  13. COCOBOD. (2016). Ghana Cocoa Board. Accra, Ghana. Retrieved from https://cocobod.gh/subsidiaries-and-divisions

  14. COCOBOD. (2020). Ghana Cocoa Board. Accra, Ghana. Retrieved from https://cocobod.gh/subsidiaries-and-divisions

  15. Cook, S.E., O’Brien, R., Corner, R.J., & Oberthur, T. (2003). Is precision agriculture irrelevant to developing countries? In Proceedings of 4th biennial European conference on precision agriculture (pp. 115–120). Berlin, German.

  16. Corwin, D. L., & Lesch, S. M. (2005). Apparent soil electrical conductivity measurements in agriculture. Computers and Electronics in Agriculture, 46(1–3), 11–43.

    Article  Google Scholar 

  17. CRIG. (2010). Cocoa manual: A source book for sustainable cocoa production (pp. 10–57). Akim-Tafo, Ghana: Cocoa Research Institute of Ghana (CRIG).

    Google Scholar 

  18. Daberkow, S. G., & Mcbride, W. D. (1998). Socioeconomic profiles of early adopters of precision agriculture technologies. Agribusiness, 16(2), 151–168.

    Google Scholar 

  19. Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

    Article  Google Scholar 

  20. Endert, J. (2018). Despite Ghana’s commitment to Internet expansion, problems persist. Retrieved from https://www.dw.com/en/despite-ghanas-commitment-to-internet-expansion-problems-persist/a-46508524

  21. Fami, H., Ali-Beygi, A. H., & Sharifzadeh, A. (2005). Approaches and techniques of participation in agricultural extension and rural development. Tehran: Iranian Rural Development Institute Press (Persian).

    Google Scholar 

  22. Fountas, S., Blackmore, S., Ess, D., Hawkins, S., Blumhoff, G., Lowenberg-Deboer, J., et al. (2005). Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture, 6(2), 121–141.

    Article  Google Scholar 

  23. Glass, G. V., Peckham, P. D., & Sanders, J. R. (1972). Consequences of failure to meet assumptions underlying the analyses of variance and covariance. Review of Educational Research, 42, 237–288.

    Article  Google Scholar 

  24. Graham, L. (2014). Precision agriculture on the global stage. Toronto, Canada: Norton Rose Fulbright. Retrieved from https://www.lexology.com/library/detail.aspx?g=fec583c8-6721-47a5-bcdd-d454ba9f3772

  25. GSS. (2019). Statistics for development and progress: Rebased 2013–2018 Annual gross domestic product. Accra, Ghana: Ghana statistical service (GSS).

    Google Scholar 

  26. Heiniger, R. W., Havlin, J. L., Crouse, D. A., Kvien, C., & Knowles, T. (2002). Seeing is believing: The role of field days and tours in precision agriculture education. Precision Agriculture, 3, 309–318.

    Article  Google Scholar 

  27. Hudson, D., & Hite, D. (2001). Adoption of precision agriculture technology in Mississippi: Preliminary results from a producer survey. Starkville, USA: Mississippi State University.

    Google Scholar 

  28. Reynolds (2019, October 8). Innovate Africa: How technology is helping African farms to flourish. CNN Business News. Retrieved from https://edition.cnn.com/2019/10/18/business/smart-farming-africa-techintl/index.html#:~:text=Acquahmeyer%20is%20now%20working%20with,and%20soil%20and%20apply%20pesticides.&text=With%20more%20than%2015%20million,is%20only%20growing%2C%20says%20Nelson

  29. Jensen, H. G., Jacobsen, L. B., Pedersen, S. M., & Tavella, E. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture, 13(6), 661–677.

    Article  Google Scholar 

  30. Juma, C. (2011). The new harvest: Agricultural innovation in Africa (pp. 1–4). New York, USA: Oxford University Press.

    Google Scholar 

  31. Kaivosoja, J. (2009). Precision Agriculture ‘09. Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  32. Khana, F. I., Husaina, T., & Abbasib, S. A. (2001). SCAP: A new methodology for safety management. Journal of Hazardous Materials A, 87, 23–56.

    Article  Google Scholar 

  33. Kitchen, N., Snyder, C., Franzen, D., & Wiebold, W. (2002). Educational needs of precision agriculture. Precision Agriculture, 3, 341–351.

    Article  Google Scholar 

  34. Knight, B., & Malcolm, B. (2009). A whole-farm investment analysis of some precision agriculture technologies. Australian Farm Business Management Journal, 6(1), 41–54.

    Google Scholar 

  35. Korduan, P., Bill, R., & Bölling, S. (2004). An interoperable geodata infrastructure for precision agriculture. Architecture, 29, 747–751.

    Google Scholar 

  36. Koutsos, T., & Menexes, G. (2019). Economic, agronomic, and environmental benefits from the Adoption of precision agriculture technologies: A systematic review. International Journal of Agricultural and Environmental Information Systems (IJAEIS), 10(1), 40–56. https://doi.org/10.4018/IJAEIS.2019010103

    Article  Google Scholar 

  37. Krejcie, R. V., & Morgan, D. W. (1970). Determining sample size for research activities. Educational and Psychological Measurement, 30(3), 607–610.

    Article  Google Scholar 

  38. Kumi, J. A. (2003). Factors affecting attitudes of cocoa farmers towards replanting of cocoa in the Kwaebibirem district of the eastern region Ghana. Coast, Ghana: University of Cape Coast.

    Google Scholar 

  39. Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2009). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.

    Article  Google Scholar 

  40. Läderach, P., Martinez-Valle, A., Schroth, G., & Castro, N. (2013). Predicting the future climatic suitability for cocoa farming of the world’s leading producer countries, Ghana and Côte d’Ivoire. Climatic Change, 119(3–4), 841–854.

    Article  Google Scholar 

  41. Lambert, D., & Lowenberg-De Boer, J. (2000). Precision agriculture profitability review (pp. 1–154). West Lafayette, IN, USA: Purdue University.

    Google Scholar 

  42. Larson, J. A., Roberts, R. K., English, B. C., Larkin, L. S., Marra, M. C., Martin, S. W., … Reeves, J. M. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture, 9, 195–208.

  43. Lattus, A. (2014). Lack of “political will” hampering environmental laws. Retrieved from https://www.mendeley.com/research/lack-political-hampering-environmental-laws/

  44. Lavergne, C. B. (2004). Factors determining adoption or non-adoption of precision agriculture by producers across the cotton belt. Unpublished master’s thesis. Office of Graduate Studies, Texas A&M University, College Station, USA.

  45. Lowenberg-DeBoer, J., & Erickson, B. (2010). The search for the killer app: Precision farming in Africa. Georgetown Journal of International Affairs, 11, 107–116.

    Google Scholar 

  46. Lyle, S. D. (2013). Experiment to test RTK GPS with satellite “Internet to Tractor” for precision agriculture. International Journal of Agricultural and Environmental Information Systems, 4(2), 1–13. https://doi.org/10.4018/jaeis.2013040101

    Article  Google Scholar 

  47. MainOne. (2010). Initiative for global development impact case study. https://www.mainone.net/internet-in-west-africa/

  48. Mauzey, R. W. (2010). Manure management using precision agriculture. Doctoral dissertation, University of Missouri, Columbia.

  49. Mcbratney, A., Whelan, B., & Ancev, T. (2005). Future directions of precision agriculture. In Proceeding: 7th International conference on precision agriculture. Minneapolis, USA: Springer.

    Google Scholar 

  50. Michels, M., Bonke, V., & Musshoff, O. (2020). Understanding the adoption of smartphone apps in crop protection. Precision Agriculture, 21, 1209–1226. https://doi.org/10.1007/s11119-020-09715-5

    Article  Google Scholar 

  51. Mintert, J., Widmar, D., Langemeier, M., Boehlje, M., & Erickson, B. (2016). The challenge of precision agriculture: Is big data the answer. In Southern Agricultural Economics Association annual meeting, San Antonio, Texas (No. 230057), USA.

  52. Mitchell, S., Weersink, A., & Erickson, B. (2018). Adoption of precision agriculture technologies in Ontario crop production. Canadian Journal of Plant Science, 98(6), 1384–1388.

    Article  Google Scholar 

  53. Najafabadi, M. O., Hosseini, S. J. F., & Bahramnejad, S. (2011). A Bayesian confirmatory factor analysis of precision agricultural challenges. African Journal of Agricultural Research, 6(5), 1219–1225.

    Google Scholar 

  54. Ncube, B., Mupangwa, W., & French, A. (2018). Precision agriculture and food security in Africa. In P. Mensah, D. Katerere, S. Hachigonta, & A. Roodt (Eds.), Systems analysis approach for complex global challenges. Cham: Springer.

    Google Scholar 

  55. Nunnaly, J. C. (1978). Psychometric theory. New York, USA: McGraw-Hill.

    Google Scholar 

  56. Okorley, E. L., Adjargo, G., & Bosompem, M. (2014). The potential of farmer field school in cocoa extension delivery: A Ghanaian Case Study. Journal of International Agricultural and Extension Education. https://doi.org/10.5191/jiaee.2014.20203

    Article  Google Scholar 

  57. Payne, D. A., & McMorris, R. F. (1967). Educational and psychological measurement: Contributions to theory and practice. Waltham, Massachusetts, USA: Blaisdell Publishing Company.

    Google Scholar 

  58. Pedersen, S. M., Ferguson, R. B., & Lark, R. M. (2001). A Comparison of producer adoption of precision agricultural practices in Denmark, the United Kingdom and the United States. (SJFI—Working Paper no. 2/2001 ed.). Statens Jordbrugs-og Fiskeriøkonomiske Institut, Copenhagen, Denmark.

  59. Reichardt, M., & Jurgens, C. (2009). Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precision Agriculture, 10(1), 73–94. https://doi.org/10.1007/s11119-008-9101-1

    Article  Google Scholar 

  60. Reichardt, M., Jurgens, C., Hutter, U., & Kloble, U. (2009a). Precision farming education in Germany—Obstacles and solutions. Bochum, Germany: Association for Technology and Structures in Agriculture.

    Google Scholar 

  61. Reichardt, M., Jurgens, C., Klobe, U., Huter, J., & Moser, K. (2009b). Dissemination of precision farming in Germany: And training activities. Precision Agriculture, 10, 525–545.

    Article  Google Scholar 

  62. Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., & Larkin, S. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics, 36(1), 143–158.

    Article  Google Scholar 

  63. Robertson, M. J., Carberry, P. S., & Brennan, L. (2007). Economic benefits of variable rate technology: Case studies from Australian grain farms. Crop and Pasture Science, 60(9), 799–807. https://doi.org/10.1071/CP08342

    Article  Google Scholar 

  64. Robertson, M. J., Llewellyn, R., & Griffiths, J. (2010). Precision agriculture—To adopt or not, that is the question. Farming Ahead, 219, 42–44.

    Google Scholar 

  65. Santos, R. (1999). Cronbach’s alpha: A tool for assessing the reliability of scales. Journal of Extension, 37(2), 1–5.

    Google Scholar 

  66. Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture, ERR–217. Washington, DC, USA: Department of Agriculture, Economic Research Service.

    Google Scholar 

  67. Shibusawa, S. (2002). Precision farming approaches to small-farm agriculture. Agro-Chemicals Report, 2(4), 13–20.

    Google Scholar 

  68. Sondheim, M., Gardels, K., & Buehler, K. (1999). GIS interoperability. Geographical Information Systems, 1, 347–358.

  69. Teboh, J. M., Tubaña, B. S., Udeigwe, T. K., Emendack, Y. Y., & Lofton, J. (2012). Applicability of ground-based remote sensors for crop N management in Sub Saharan Africa. Journal of Agricultural Science, 4(3), 175.

    Google Scholar 

  70. Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6

    Article  Google Scholar 

  71. Torbett, J. C., Roberts, R. K., Larson, J. A., & English, B. C. (2007). Perceived importance of precision farming technologies in improving phosphorus and potassium efficiency in cotton production. Precision Agriculture, 8(3), 127–137.

    Article  Google Scholar 

  72. Van Alphen, B. J., & Stoorvogel, J. J. (2000). A methodology for precision nitrogen fertilization in high-input farming systems. Precision Agriculture, 2(4), 319–332.

    Article  Google Scholar 

  73. Wehmeier, S. (2008). Oxford advanced learner’s dictionary (7th ed.). London, UK: Oxford University Press.

    Google Scholar 

  74. White, E. L., Thomasson, J. A., Auvermann, B., Kitchen, N. R., Pierson, L. S., Porter, D., ... Werner, F. (2020). Report from the conference, ‘identifying obstacles to applying big data in agriculture’. Precision Agriculture22(1), 306–315.

  75. Wiebold, W., Suduth, K., Davis, J., Shannon, D., & Kitchen, N. (1998). Determining barriers to adoption and research needs of precision agriculture. (Report to the North Central Soybean Research Program). Retrieved from http://www.fse.missouri.edu/mpac/pubs/parpt.pdf

  76. Yagi, H., & Howitt, R. (2003). Farm Management. Strategies of precision agriculture: Comparison of countries with/without (pp. 297–306). Canterbury, New Zealand: Methven.

    Google Scholar 

  77. Yule, D., & Radford, B. (2003). Controlled traffic farming. Case Study9. Queensland Department of PrimaryIndustries, Rockhampton. http://lwa.gov.au/files/products/land-and-water-australia-corporate/ew071245/ew071245-cs-09.pdf.

  78. Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy, 55, 89–99.

    Article  Google Scholar 

  79. Zarei, Z. (2008). Information technology and its effectiveness in field of precision agriculture. Retrieved from www.aftab.ir

  80. Zhou, J., Cong, B., & Liu, C. (2014). Elimination of vibration noise from an impact-type grain mass flow sensor. Precision Agriculture. https://doi.org/10.1007/s11119-014-9359-4

    Article  Google Scholar 

Download references

Acknowledgements

The researcher acknowledges the following for their financial support to this study: (1) The University of Cape Coast, Ghana (http://ucc.edu.gh), (2) The Association of African Universities (AAU-www.aau.org) and, (3)The Council for the Development of Social Science Research in Africa (CODESRIA-http://www.codesria.org.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Martin Bosompem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (SAV 27 kb)

Appendices

Appendix A

See Table 4.

Table 4 Farmer demographic characteristics and environmental challenges to PATs as perceived by scientists and CEAs

Appendix B

See Table 5.

Table 5 Education/training and economic challenges to PATs as perceived by Scientists and CEAs

Appendix C

See Table 6.

Table 6 Technical challenges to PATs as perceived by Scientists and CEAs

Appendix D

See Table 7

Table 7 Time, data quality and political challenges to PATs as perceived by Scientists and CEAs

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bosompem, M. Potential challenges to precision agriculture technologies development in Ghana: scientists’ and cocoa extension agents’ perspectives. Precision Agric (2021). https://doi.org/10.1007/s11119-021-09801-2

Download citation

Keywords

  • Cocoa Production
  • Challenges
  • Precision Agriculture
  • Information and Communication Technologies
  • Sub-Saharan Africa