Skip to main content

Taking into account change of support when merging heterogeneous spatial data for field partition

Abstract

The paper describes a geostatistical approach for combining multi-source data with different support for field delineation into homogeneous soil zones. It takes into account change of support explicitly given the critical influence of spatial resolution on the statistical characteristics of estimates. Geophysical and hyperspectral data were used in combination with soil chemical properties measured in the laboratory on 50 samples collected in a field cropped with Tomato (Solanum lycopersicum, L. cv San Marzano). The approach consisted in performing Gaussian anamorphosis with support correction, multi-collocated block cokriging and factorial block cokriging to jointly analyse all data. Two regionalised factors at different spatial scales were retained to split the field into homogeneous zones for site-specific management. The results emphasize the impact of spatial scale on site-specific management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Aïchi, H., Fouad, Y., Walter, C., Viscarra Rossel, R. A., Lili Chabaane, Z., & Sanaa, M. (2009). Regional predictions of soil organic carbon content from spectral reflectance measurements. Biosystems Engineering, 104(3), 442–446. https://doi.org/10.1016/j.biosystemseng.2009.08.002.

    Article  Google Scholar 

  2. Armstrong, M. (1998). Basic linear geostatistics. Berlin, Heidelberg, Germany: Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-58727-6.

    Book  Google Scholar 

  3. Bremner, J. M. (1996). Nitrogen‐total. In D. L. Sparks (Ed.), Methods of Soil Analysis. Part 3. Chemical Methods (pp. 1085–1121). Madison, WI: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  4. Burgess, T. M., & Webster, R. (1980). Optimal interpolation and isarithmic mapping of soil properties: II Block kriging. Journal of Soil Science, 31(2), 333–341. https://doi.org/10.1111/j.1365-2389.1980.tb02085.x.

    Article  Google Scholar 

  5. Buttafuoco, G., Castrignanò, A., Cucci, G., Lacolla, G., & Lucà, F. (2017). Geostatistical modelling of within-field soil and yield variability for management zones delineation: a case study in a durum wheat field. Precision Agriculture, 18(1), 37–58. https://doi.org/10.1007/s11119-016-9462-9.

    Article  Google Scholar 

  6. Castrignanò, A., Buttafuoco, G., Quarto, R., Parisi, D., Viscarra Rossel, R. A., Terribile, F., et al. (2018). A geostatistical sensor data fusion approach for delineating homogeneous management zones in Precision Agriculture. CATENA, 167, 293–304. https://doi.org/10.1016/j.catena.2018.05.011.

    Article  Google Scholar 

  7. Castrignanò, A., Quarto, R., Venezia, A., & Buttafuoco, G. (2019). A comparison between mixed support kriging and block cokriging for modelling and combining spatial data with different support. Precision Agriculture, 20(2), 193–213. https://doi.org/10.1007/s11119-018-09630-w.

    Article  Google Scholar 

  8. Castrignanò, A., Wong, M. T. F., Stelluti, M., De Benedetto, D., & Sollitto, D. (2012). Use of EMI, gamma-ray emission and GPS height as multi-sensor data for soil characterisation. Geoderma, 175–176, 78–89. https://doi.org/10.1016/j.geoderma.2012.01.013.

    CAS  Article  Google Scholar 

  9. Castrignanò, A., Giugliarini, L., Risaliti, R., & Martinelli, N. (2000). Study of spatial relationships among some soil physico-chemical properties of a field in central Italy using multivariate geostatistics. Geoderma, 97(1–2), 39–60. https://doi.org/10.1016/S0016-7061(00)00025-2.

    Article  Google Scholar 

  10. Castrignanò, A., Buttafuoco, G., Quarto, R., Vitti, C., Langella, G., Terribile, F., et al. (2017). A combined approach of sensor data fusion and multivariate geostatistics for delineation of homogeneous zones in an agricultural field. Sensors (Switzerland), 17(12), 2794. https://doi.org/10.3390/s17122794.

    Article  Google Scholar 

  11. Castrignanò, A., Costantini, E. A. C., Barbetti, R., & Sollitto, D. (2009). Accounting for extensive topographic and pedologic secondary information to improve soil mapping. CATENA, 77(1), 28–38. https://doi.org/10.1016/j.catena.2008.12.004.

    Article  Google Scholar 

  12. Cavallo, G., De Benedetto, D., Castrignanò, A., Quarto, R., Vonella, A. V., & Buttafuoco, G. (2016). Use of geophysical data for assessing 3D soil variation in a durum wheat field and their association with crop yield. Biosystems Engineering, 152, 28–40. https://doi.org/10.1016/j.biosystemseng.2016.07.002.

    Article  Google Scholar 

  13. Chilès, J.-P., & Delfiner, P. (2012). Geostatistics: Modeling spatial uncertainty (2nd ed.). Hoboken, NJ, USA: Wiley. https://doi.org/10.1002/9781118136188.

    Book  Google Scholar 

  14. Cobo, J. G., Dercon, G., Yekeye, T., Chapungu, L., Kadzere, C., Murwira, A., et al. (2010). Integration of mid-infrared spectroscopy and geostatistics in the assessment of soil spatial variability at landscape level. Geoderma, 158(3–4), 398–411. https://doi.org/10.1016/j.geoderma.2010.06.013.

    CAS  Article  Google Scholar 

  15. Conforti, M., Matteucci, G., & Buttafuoco, G. (2018). Using laboratory Vis-NIR spectroscopy for monitoring some forest soil properties. Journal of Soils and Sediments, 18(3), 1009–1019. https://doi.org/10.1007/s11368-017-1766-5.

    CAS  Article  Google Scholar 

  16. Corwin, D. (2005). Geospatial Measurement of Apparent Soil Electrical Conductivity for Characterizing Soil Spatial Variability. In J. Alvarez-Benedi & R. Munoz-Carpena (Eds.), Soil-water-solute process characterization an integrated approach (pp. 639–672). Boca Raton, FL, USA: CRC Press. https://doi.org/10.1201/9781420032086.ch18.

  17. Corwin, Dennis L. (2013). Site-specific management and delineating management zones. In M. Oliver, T. Bishop, & B. P. Marchant (Eds.), Precision agriculture for sustainability and environmental protection (Vol. 9780203128, pp. 135–157). London, UK: Routledge. https://doi.org/10.4324/9780203128329.

  18. Daniels, J. J., Ehsani, M. R., & Allred, B. J. (2008). Ground-Penetrating Radar Methods (GPR). In B. J. Allred, J. J. Daniels, & M. R. Ehsani (Eds.), Handbook of agricultural geophysics (pp. 129–146). Boca Raton, FL, USA: CRC Press.

    Google Scholar 

  19. De Benedetto, D., Castrignano, A., Sollitto, D., Modugno, F., Buttafuoco, G., &, Lo Papa G. (2012). Integrating geophysical and geostatistical techniques to map the spatial variation of clay. Geoderma, 171–172, 53–63. https://doi.org/https://doi.org/10.1016/j.geoderma.2011.05.005.

  20. Doolittle, J. A., & Brevik, E. C. (2014). The use of electromagnetic induction techniques in soils studies. Geoderma, 223–225, 33–45. https://doi.org/10.1016/J.geoderma.2014.01.027.

    Article  Google Scholar 

  21. Emery, X. (2007). On some consistency conditions for geostatistical change-of-support models. Mathematical Geology, 39(2), 205–223. https://doi.org/10.1007/s11004-006-9073-5.

    Article  Google Scholar 

  22. Gebbers, R., & Adamchuk, V. I. (2010). Precision agriculture and food security. Science, 327, 828–831. https://doi.org/10.1126/science.1183899.

    CAS  Article  PubMed  Google Scholar 

  23. Goovaerts, P. (1997). Geostatistics for natural resources evaluation. Applied geostatistics series. New York, USA: Oxford University Press.

  24. Gotway, C. A., & Young, L. J. (2002). Combining incompatible spatial data. Journal of the American Statistical Association, 97(458), 632–648. https://doi.org/10.1198/016214502760047140.

    Article  Google Scholar 

  25. Huang, H. (2005). Depth of investigation for small broadband electromagnetic sensors. Geophysics, 70(6), G135. https://doi.org/10.1190/1.2122412.

    Article  Google Scholar 

  26. Jackson, J. E. (2003). A user’s guide to principal components. New York, USA: Wiley.

    Google Scholar 

  27. Journel, A. G., & Huijbregts, C. J. (1978). Mining geostatistics. London, UK: Academic Press.

    Google Scholar 

  28. Longobardi, A., Buttafuoco, G., Caloiero, T., & Coscarelli, R. (2016). Spatial and temporal distribution of precipitation in a Mediterranean area (southern Italy). Environmental Earth Sciences, 75(3), 1–20. https://doi.org/10.1007/s12665-015-5045-8.

    Article  Google Scholar 

  29. Martens, H., & Næs, T. (1989). Multivariate calibration. New York, USA: Wiley.

    Google Scholar 

  30. Matheron, G. (1973). The intrinsic random functions and their applications. Advances in Applied Probability, 5(03), 439–468. https://doi.org/10.2307/1425829.

    Article  Google Scholar 

  31. Matheron, G. (1971). The theory of regionalized variables and its applications. Les Cahiers du Centre de Morphlogie Mathematique (Vol. 5). Fontainebleau, France: Ecole Nationale Superieure des Mines de Paris.

  32. Matheron, G. (1976). Forecasting block grade distributions: the transfer functions. In M. Guarascio, M. David, & C. J. Huijbregts (Eds.), Advanced geostatistics in the mining industry (pp. 237–251). Dordrecht, The Netherlands: Springer.

    Chapter  Google Scholar 

  33. McBratney, A. B., Minasny, B., & Whelan, B. (2011). Defining proximal soil sensing. In V. I. Adamchuk & R. A. Viscarra Rossel (Eds.), The Second Global Workshop on Proximal Soil Sensing (pp. 144–146). Montreal, Canada: McGill University.

    Google Scholar 

  34. Mulla, D. J. (2017). Spatial variability in precision agriculture. In S. Shashi, H. Xiong, & X. Zhou (Eds.), Encyclopedia of GIS (pp. 2118–2125). Cham, Switzerland: Springer. https://doi.org/10.1007/978-3-319-23519-6_1652-1.

  35. Myers, D. E. (1984). Co-Kriging—New developments. In G. Verly, M. David, A. G. Journel, & A. Marechal (Eds.), Geostatistics for natural resources characterization (pp. 295–305). Dordrecht, The Netherlands: Springer. https://doi.org/10.1007/978-94-009-3699-7_18.

  36. Nanni, M. R., & Demattê, J. A. M. (2006). Spectral reflectance methodology in comparison to traditional soil analysis. Soil Science Society of America Journal, 70(2), 393–407. https://doi.org/10.2136/sssaj2003.0285.

    CAS  Article  Google Scholar 

  37. Nelson, D. W., & Sommers, L. E. (1996). Total carbon, organic carbon, and organic matter. In D. L. Sparks (Ed.), Methods of soil analysis. Part 3. Chemical methods (pp. 961–1010). Madison, WI: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  38. Nocita, M., Stevens, A., van Wesemael, B., Aitkenhead, M., Bachmann, M., Barthès, B., et al. (2015). Soil spectroscopy: An alternative to wet chemistry for soil monitoring. Advances in Agronomy, 132, 139–159. https://doi.org/10.1016/bs.agron.2015.02.002.

    Article  Google Scholar 

  39. Olsen, S. R., & Sommers, L. E. (1982). Phosphorus. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 403–430). Madison, WI: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  40. Rivoirard, J., Freulon, X., Demange, C., & Lecureuil, A. (2014). Kriging, indicators, and nonlinear geostatistics. Journal of the Southern African Institute of Mining and Metallurgy, 114(3), 245–250.

    Google Scholar 

  41. Rivoirard, J. (1994). Introduction to disjunctive kriging and non-linear geostatistics. Oxford, UK: Clarendon Press.

    Google Scholar 

  42. Rivoirard, J. (2001). Which models for collocated cokriging? Mathematical Geology, 33(2), 117–131. https://doi.org/10.1023/A:1007530600152.

    Article  Google Scholar 

  43. Romesburg, H. C. (2011) Cluster analysis: An introduction. In Lovric M (Ed.), International encyclopedia of statistical science (pp. 262–265). Berlin, Heidelberg, Germany: Springer.

  44. Stenberg, B., Viscarra Rossel, R. A., Mouazen, A. M., & Wetterlind, J. (2010). Chapter Five—Visible and near infrared spectroscopy in soil science. In Advances in agronomy (Vol. 107, pp. 163–215). https://doi.org/10.1016/S0065-2113(10)07005-7.

  45. Sudduth, K. A., Kitchen, N. R., Wiebold, W. J., Batchelor, W. D., Bollero, G. A., Bullock, D. G., et al. (2005). Relating apparent electrical conductivity to soil properties across the north-central USA. Computers and Electronics in Agriculture, 46(1–3), 263–283. https://doi.org/10.1016/j.compag.2004.11.010.

    Article  Google Scholar 

  46. Thomas, G. W. (1982). Exchangeable cations. In A. L. Page, R. H. Miller, & D. R. Keeney (Eds.), Methods of soil analysis. Part 2. Chemical and microbiological properties (pp. 159–165). Madison, WI: American Society of Agronomy and Soil Science Society of America.

    Google Scholar 

  47. Vågen, T. G., Shepherd, K. D., & Walsh, M. G. (2006). Sensing landscape level change in soil fertility following deforestation and conversion in the highlands of Madagascar using Vis-NIR spectroscopy. Geoderma, 133(3–4), 281–294. https://doi.org/10.1016/j.geoderma.2005.07.014.

    CAS  Article  Google Scholar 

  48. Viscarra Rossel, R. A., & Behrens, T. (2010). Using data mining to model and interpret soil diffuse reflectance spectra. Geoderma, 158(1–2), 46–54. https://doi.org/10.1016/j.geoderma.2009.12.025.

    CAS  Article  Google Scholar 

  49. Viscarra Rossel, R. A., Walvoort, D. J. J., McBratney, A. B., Janik, L. J., & Skjemstad, J. O. (2006). Visible, near infrared, mid infrared or combined diffuse reflectance spectroscopy for simultaneous assessment of various soil properties. Geoderma, 131(1), 59–75. https://doi.org/10.1016/j.geoderma.2005.03.007.

    CAS  Article  Google Scholar 

  50. Wackernagel, H. (2003). Multivariate geostatistics: an introduction with applications. Berlin, Germany: Springer.

    Book  Google Scholar 

  51. Webster, R., & Oliver, M. A. (2007). Geostatistics for environmental scientists. Chichester, UK: Wiley. https://doi.org/10.1002/9780470517277.

  52. Zovko, M., Romić, D., Colombo, C., Di Iorio, E., Romić, M., Buttafuoco, G., et al. (2018). A geostatistical Vis-NIR spectroscopy index to assess the incipient soil salinization in the Neretva River valley, Croatia. Geoderma, 332, 60–72. https://doi.org/10.1016/j.geoderma.2018.07.005.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

Financial support for this work comes from the project “M2Q” PON03PE_00180_1 co-funded by the National Operational Program for Research and Competitiveness (PON R&C) 2007–2013, through the European Regional Development Fund (ERDF) and national resource (Revolving Fund—Cohesion Action Plan MIUR). D.M. MIUR n. 738/05.03.2014. The authors thank the reviewers of this paper and Dr. John Stafford for providing constructive comments, which have contributed to the improvement of the published version.

Author information

Affiliations

Authors

Corresponding author

Correspondence to G. Buttafuoco.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Buttafuoco, G., Quarto, R., Quarto, F. et al. Taking into account change of support when merging heterogeneous spatial data for field partition. Precision Agric 22, 586–607 (2021). https://doi.org/10.1007/s11119-020-09781-9

Download citation

Keywords

  • Hyperspectral data
  • Support change
  • Multi-collocated block cokriging
  • Factorial cokriging