Skip to main content

Advertisement

Log in

Evaluating the drivers of banana flowering cycle duration using a stochastic model and on farm production data

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The use of data produced by farmers to generate knowledge and to inform production decisions is one of the objectives of precision agriculture (PA). Frameworks to analyse and represent those data are now widely available for many crops but are not relevant to banana cropping systems because of its asynchronicity. The average period between two flowering events on the same plant, called CD, is variable, as opposed to most crops whose phenology is synchronized by the seasons. Therefore, CD is a property of interest for understanding yields but it cannot be easily measured in plantations. In this study, a method was proposed to generate information on CD using the producer’s commercially collected production data on flowering from 724 fields over 15 years in a Cameroonian plantation. A new stochastic model based on the development of the banana plant and using CD as a parameter was formulated. This model was then adjusted using temporal flowering data to estimate CD at the field level. Results showed that CD was variable between fields (median of 209 days and standard deviation of 24 days) and spatially structured (autocorrelation ratio of 0.87). The effect of management (irrigation, cultivar) and environmental conditions (temperatures, elevation) on CD was studied. There was no positive effect of thermal time (degree days) vs. Julian days on model fitting and the CD estimation. In contrast, elevation, cultivar and irrigation had an effect on CD. For growers, this highlights the importance of taking into account CD when analysing yields, and not to rely only on the weight of the bunches at harvest. It also shows that production data can be effectively used and mapped to inform production decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Arantes, A. D. M., Donato, S. L. R., Silva, T. S., Rodrigues Filho, V. A., & Amorim, E. P. (2017). Agronomic evaluation of banana plants in three production cycles in southwestern state of Bahia. Revista Brasileira de fruticultura, 39(1), 990. https://doi.org/10.1590/0100-29452017990.

    Article  Google Scholar 

  • Balafoutis, A. T., Beck, B., Fountas, S., Tsiropoulos, Z., Vangeyte, J., van der Wal, T., et al. (2017). Smart farming technologies—Description, taxonomy and economic impact. Precision Agriculture: Technology and Economic Perspectives. Springer. https://doi.org/10.1007/978-3-319-68715-5_2.

  • Brisson, N., Ozier-Lafontaine, H., & Dorel, M. (1998). Effects of soil management and water regime on banana growth between planting and flowering. Simulation using the STICS model. Acta Horticulturae, 490, 229–238. https://doi.org/10.17660/actahortic.1998.490.23.

    Article  Google Scholar 

  • Bronson, K. F., Booker, J. D., Bordovsky, J. P., Keeling, J. W., Wheeler, T. A., Boman, R. K., et al. (2006). Site-specific irrigation and nitrogen management for cotton production in the southern high plains. Agronomy Journal, 98(1), 212. https://doi.org/10.2134/agronj2005.0149.

    Article  Google Scholar 

  • Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58(5), 1501. https://doi.org/10.2136/sssaj1994.03615995005800050033x.

    Article  Google Scholar 

  • Cottin, R., Melin, P., & Ganry, J. (1987). Modélisation de la production bananière. Influence de quelques paramètres en Martinique (Modeling of banana production. Influence of some parameters in Martinique). Fruits, 42(12), 691–701.

    Google Scholar 

  • Dens, K. R., Romero, R. A., Swennen, R., & Turner, D. W. (2008). Removal of bunch, leaves, or pseudostem alone, or in combination, influences growth and bunch weight of ratoon crops in two banana cultivars. The Journal of Horticultural Science and Biotechnology, 83(1), 113–119. https://doi.org/10.1080/14620316.2008.11512355.

    Article  Google Scholar 

  • Dorel, M., Damour, G., Leclerc, N., Lakhia, S., Ricci, S., Vingadassalon, F., et al. (2016). Parent plant vs sucker—How can competition for photoassimilate allocation and light acquisition be managed in new banana hybrids? Field Crops Research, 198, 70–79. https://doi.org/10.1016/j.fcr.2016.08.028.

    Article  Google Scholar 

  • Eckstein, K., & Robinson, J. C. (2000). Influence of mother plant on sucker growth, development and photosysnthesis in banana musa AAA. Acta Horticulturae, 531, 161–168. https://doi.org/10.17660/actahortic.2000.531.23.

    Article  Google Scholar 

  • Famoye, F., Johnson, N. L., Kotz, S., & Balakrishnan, N. (1995). Continuous univariate distributions, volume 1. Technometrics, 37(4), 466. https://doi.org/10.2307/1269751.

    Article  Google Scholar 

  • FAO. (2016). FAOSTAT, trade, crops and livestock products, Bananas. Retrieved January, 2019, from https://www.fao.org/faostat/.

  • Fortescue, J. A., Turner, D. W., & Romero, R. (2011). Evidence that banana (Musa spp.), a tropical monocotyledon, has a facultative long-day response to photoperiod. Functional Plant Biology, 38(11), 867. https://doi.org/10.1071/fp11128.

    Article  PubMed  Google Scholar 

  • Freitas, A. S., Pozza, E. A., Alves, M. C., Coelho, G., Rocha, H. S., & Pozza, A. A. A. (2015). Spatial distribution of Yellow Sigatoka Leaf Spot correlated with soil fertility and plant nutrition. Precision Agriculture, 17(1), 93–107. https://doi.org/10.1007/s11119-015-9409-6.

    Article  Google Scholar 

  • Ganry, J., & Meyer, J. P. (1975). Recherche d’une loi d’action de la température sur la croissance des fruits du bananier (Research on a law governing the effect of temperature on the growth of banana fruits). Fruits, 30(6), 375–392.

    Google Scholar 

  • Goenaga, R., & Irizarry, H. (1995). Yield performance of banana irrigated with fractions of class a pan evaporation in a semiarid environment. Agronomy Journal, 87(2), 172. https://doi.org/10.2134/agronj1995.00021962008700020006x.

    Article  Google Scholar 

  • Jullien, A., Chillet, M., & Malézieux, E. (2008). Pre-harvest growth and development, measured as accumulated degree days, determine the post-harvest green life of banana fruit. The Journal of Horticultural Science and Biotechnology, 83(4), 506–512. https://doi.org/10.1080/14620316.2008.11512414.

    Article  CAS  Google Scholar 

  • Lamour, J., Naud, O., Lechaudel, M., Le Moguédec, G., Taylor, J., & Tisseyre, B. (2019). Spatial analysis and mapping of banana crop properties: Issues of the asynchronicity of the banana production and proposition of a statistical method to take it into account. Precision Agriculture, 21(4), 897–921. https://doi.org/10.1007/s11119-019-09700-7.

    Article  Google Scholar 

  • Lamour, J., Naud, O., Lechaudel, M., & Tisseyre, B. (2017). Mapping properties of an asynchronous crop: The example of time interval between flowering and maturity of banana. In J. A. Taylor, D. Cammarano, A. Prashar, & A. Hamilton (Eds.), Proceedings of the 11th European Conference on Precision Agriculture. Advances in Animal Biosciences, (Vol. 8, pp. 481–486). https://doi.org/10.1017/s2040470017000449.

  • Lawless, J. F. (2002). Statistical models and methods for lifetime data. Hoboken, NJ: Wiley. https://doi.org/10.1002/9781118033005.

    Book  Google Scholar 

  • Leroux, C., Jones, H., Pichon, L., Guillaume, S., Lamour, J., Taylor, J., et al. (2018). GeoFIS: An open source, decision-support tool for precision agriculture data. Agriculture, 8(6), 73. https://doi.org/10.3390/agriculture8060073.

    Article  Google Scholar 

  • Oliver, M. A., & Webster, R. (2014). A tutorial guide to geostatistics: Computing and modelling variograms and kriging. CATENA, 113, 56–69.

    Article  Google Scholar 

  • Pebesma, E. J. (2004). Multivariable geostatistics in S: The gstat package. Computers and Geosciences, 30, 683–691.

    Article  Google Scholar 

  • Pebesma, E. J., & Bivand R. S. (2005). Classes and methods for spatial data in R. R News 5(2). Retrieved January, 2019, from https://cran.r-project.org/doc/Rnews/.

  • Pinheiro, J. C., & Bates, D. M. (2000). Mixed-effects models in S and S-PLUS. New York, NY: Springer. https://doi.org/10.1007/978-1-4419-0318-1.

    Book  Google Scholar 

  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & R Core Team. (2018). nlme: Linear and nonlinear mixed effects models in R. Retrieved January 2019, from https://CRAN.R-project.org/package=nlme.

  • Ploetz, R. C., & Evans, E. A. (2015). The future of global banana production. Horticultural Reviews, 43, 311–352. https://doi.org/10.1002/9781119107781.ch06.

    Article  Google Scholar 

  • R Core Team. (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing. Retrieved January 2019, from https://www.R-project.org/.

  • Shaffer, T. L., & Johnson, D. H. (2008). Ways of learning: Observational studies versus experiments. Journal of Wildlife Management, 72(1), 4–13.

    Article  Google Scholar 

  • Singh, I., Srivastava, A. K., Chandna, P., & Gupta, R. K. (2006). Crop sensors for efficient nitrogen management in sugarcane: Potential and constraints. Sugar Tech, 8(4), 299–302. https://doi.org/10.1007/bf02943572.

    Article  CAS  Google Scholar 

  • Stoorvogel, J. J., & Orlich, R. A. (2000). An integrated system for precision agriculture in bananas. In Proceedings of the 5th International Conference on Precision Agriculture (pp. 1–14). Madison, WI: American Society of Agronomy.

  • Taylor, J. A., Praat, J. P., & Bollen, A. F. (2007). Spatial variability of kiwifruit quality in orchards and its implications for sampling and mapping. HortScience, 42(2), 246–250.

    Article  Google Scholar 

  • Tilman, D. (1989). Ecological experimentation: Strengths and conceptual problems. Long-term studies in ecology (pp. 136–157). New York, NY, USA: Springer.

    Chapter  Google Scholar 

  • Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Whithin-field temporal stability of some parameters in Viticulture: potential toward a site specific management. OENO One, 42(1), 27. https://doi.org/10.20870/oeno-one.2008.42.1.834.

    Article  Google Scholar 

  • Tixier, P., Malezieux, E., & Dorel, M. (2004). SIMBA-POP: A cohort population model for long-term simulation of banana crop harvest. Ecological Modelling, 180(2–3), 407–417.

    Article  Google Scholar 

  • Tixier, P., Malézieux, E., Dorel, M., & Wery, J. (2008). SIMBA, a model for designing sustainable banana-based cropping systems. Agricultural Systems, 97(3), 139–150. https://doi.org/10.1016/j.agsy.2008.02.003.

    Article  Google Scholar 

  • Turner, D. W., Fortescue, J. A., & Thomas, D. S. (2007). Environmental physiology of the bananas (Musa spp.). Brazilian Journal of Plant Physiology, 19(4), 463–484. https://doi.org/10.1590/s1677-04202007000400013.

    Article  CAS  Google Scholar 

  • von Gadow, K., Zhao, X. H., Tewari, V. P., Zhang, C. Y., Kumar, A., Rivas, J. J. C., et al. (2016). Forest observational studies: an alternative to designed experiments. European Journal of Forest Research, 135(3), 417–431.

    Article  Google Scholar 

  • Weber, O. B., Dos-santos-garruti, D., Norões, N. P., & Oliveira-e-silva, S. (2017). Performance of banana genotypes with resistance to black leaf streak disease in Northeastern Brazil. Pesquisa Agropecuária Brasileira, 52(3), 161–169. https://doi.org/10.1590/s0100-204x2017000300003.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Compagnie Fruitière and Plantation du Haut Penja, in particular Alain Normand, Gilbert Bonnefont, Aurélien Pugeaux and Patrick Vieil who provided the data and supported the study. They would also like to thank all the field workers who participated in the data collection. Finally, they would like to thank Dr. Ryad Bendoula for sharing computer equipment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Lamour.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 24 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lamour, J., Le Moguédec, G., Naud, O. et al. Evaluating the drivers of banana flowering cycle duration using a stochastic model and on farm production data. Precision Agric 22, 873–896 (2021). https://doi.org/10.1007/s11119-020-09762-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-020-09762-y

Keywords