Abstract
Precision agriculture, which has existed for over four decades, ensures efficient use of agricultural resources for increased productivity and sustainability with the use of technology. Due to the lingering perception that the adoption of precision agriculture has been slow, this study examines public thoughts on the practice of precision agriculture by employing social media analytics. A machine learning-based social media analytics tool—trained to identify and classify posts using lexicons, emoticons, and emojis—was used to capture sentiments and emotions of social media users towards precision agriculture. The study also validated the drivers and challenges of precision agriculture by comparing extant literature with social media data. By mining online data from January 2010 to December 2019, this research captured over 40,000 posts discussing a myriad of concerns related to the practice. An analysis of these posts uncovered joy as the most predominant emotion, also reflected the prevalence of positive sentiments. Robust regulatory and institutional policies that promote both national and international agenda for PA adoption, and the potential of agricultural technology adoption to result in net-positive job creation were identified as the most prevalent drivers. On the other hand, the cost and complexity of currently available technologies, as well as the need for proper data security and privacy were the most common challenges present in social media dialogue.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.Notes
References
Asur, S., & Huberman, B. A. (2010). Predicting the future with social media. In 2010 IEEE/WIC/ACM international conference on web intelligence and intelligent agent technology (pp. 492–499). https://doi.org/10.1109/WI-IAT.2010.63.
Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520. https://doi.org/10.1016/j.dss.2012.07.002.
Bakshi, R. K., Kaur, N., Kaur, R., & Kaur, G. (2016). Opinion mining and sentiment analysis. In 2016 3rd international conference on computing for sustainable global development (INDIACom) (pp. 452–455).
Balafoutis, A. T., Beck, B., Fountas, S., Tsiropoulos, Z., Vangeyte, J., van der Wal, T., et al. (2017). Smart farming technologies—Description, taxonomy and economic impact. In S. M. Pedersen & K. M. Lind (Eds.), Precision agriculture: technology and economic perspectives (pp. 21–77). Springer. https://doi.org/10.1007/978-3-319-68715-5_2.
Bian, J., Yoshigoe, K., Hicks, A., Yuan, J., He, Z., Xie, M., et al. (2016). Mining Twitter to assess the public perception of the “Internet of Things”. PLoS ONE, 11(7), e0158450. https://doi.org/10.1371/journal.pone.0158450.
Bort, J. (2014, March 14). Bill Gates: People don’t realise how many jobs will soon be replaced by software bots. Business Insider Australia. https://www.businessinsider.com.au/bill-gates-bots-are-taking-away-jobs-2014-3..
CEMA - European Agricultural Machinery. (2017, February 13). Digital farming: What does it really mean?https://www.cema-agri.org/page/digital-farming-what-does-it-really-mean..
Choi, S. L. (2016). Integrating social media and rainfall data to understand the impacts of severe weather in Argentina. Thesis, University of Illinois at Urbana-Champaign. https://hdl.handle.net/2142/90667.
Clercq, M. D., Vats, A., & Biel, A. (2018). Agriculture 4.0: The future of farming technology. World Government Summit, 30.
Connolly, A. J., & Phillips-Connolly, K. (2012). Can agribusiness feed billion new people…and save the planet? A GLIMPSE into the future. International Food and Agribusiness Management Review, 15, 14.
Connolly, A. J., Sodre, L. R., & Phillips-Connolly, K. (2016a). GLIMPSE 2.0: A framework to feed the world. International Food and Agribusiness Management Review, 19(4), 1–22. https://doi.org/10.22434/IFAMR2015.0202.
Connolly, A. J., Sodre, L. R., & Potocki, A. D. (2016b). GLIMPSE: Using social media to identify the barriers facing farmers’ quest to feed the world. Social Networking, 05(04), 118–127. https://doi.org/10.4236/sn.2016.54012.
Crimson Hexagon. (2018a). Enterprise consumer insights | Forsight from Crimson Hexagon. https://www.crimsonhexagon.com/forsight/..
Crimson Hexagon. (2018b, December 10). Emotion analysis: Overview. Crimson Hexagon. https://help.crimsonhexagon.com/hc/en-us/articles/211129163-Emotion-Analysis-Overview..
Crimson Hexagon. (2019a, March 6). Explore tab: Topic wheel section. Crimson Hexagon. https://help.crimsonhexagon.com/hc/en-us/articles/203641365-Explore-Tab-Topic-Wheel-Section..
Crimson Hexagon. (2019b, August 18). Explore tab: Clusters. Crimson Hexagon. https://help.crimsonhexagon.com/hc/en-us/articles/202913009-Explore-Tab-Clusters..
Crimson Hexagon. (2019c, December 10). Sentiment analysis: Overview. Crimson Hexagon. https://help.crimsonhexagon.com/hc/en-us/articles/203523885-Sentiment-Analysis-Overview..
Di Consiglio, L., Reis, F., Lehtonen, R., Beręsewicz, M., Karlberg, M., European Commission, & Statistical Office of the European Union. (2018). An overview of methods for treating selectivity in big data sources: 2018 edition..
Efron, M. (2010). Hashtag retrieval in a microblogging environment. In Proceeding of the 33rd international ACM SIGIR conference on research and development in information retrieval, 787788.
Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3/4), 169–200.
El-Gayar, O., Nasralah, T., & Elnoshokaty, A. (2019). Wearable devices for health and wellbeing: Design insights from Twitter. In 52nd Hawaii international conference on systems sciences (HICSS-52’19).
El-Gayar, O., & Ofori, M. (2020). Disrupting agriculture: The status and prospects for ai and big data in smart agriculture. In M. Strydom & S. Buckley (Eds.), AI and big data’s potential for disruptive innovation. IGI Global. https://doi.org/10.4018/978-1-5225-9687-5.ch007.
Food and Agriculture Organization of the United Nations. (FAO). (2020). Climate-smart agriculture. https://www.fao.org/climate-smart-agriculture/en/..
George, D. R. (2011). “Friending Facebook?” A minicourse on the use of social media by health professionals. Journal of Continuing Education in the Health Professions, 31(3), 215–219. https://doi.org/10.1002/chp.20129.
Hanna, R., Rohm, A., & Crittenden, V. L. (2011). We’re all connected: The power of the social media ecosystem. Business Horizons, 54(3), 265–273. https://doi.org/10.1016/j.bushor.2011.01.007.
Harvey, C. A., Chacón, M., Donatti, C. I., Garen, E., Hannah, L., Andrade, A., et al. (2014). Climate-smart landscapes: Opportunities and challenges for integrating adaptation and mitigation in tropical agriculture: Climate-smart landscapes. Conservation Letters, 7(2), 77–90. https://doi.org/10.1111/conl.12066.
Hazell, P., & Wood, S. (2008). Drivers of change in global agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363(1491), 495–515. https://doi.org/10.1098/rstb.2007.2166.
Hopkins, D. J., & King, G. (2010). A method of automated nonparametric content analysis for social science. American Journal of Political Science, 54(1), 229–247. https://doi.org/10.1111/j.1540-5907.2009.00428.x.
IFAD. (2016). Fostering inclusive rural transformation. In Rural Development Report 2016. International Fund for Agricultural Development. https://www.ifad.org/documents/30600024/e8e9e986-2fd9-4ec4-8fe3-77e99af934c4..
Jackson, L. A., Ervin, K. S., Gardner, P. D., & Schmitt, N. (2001). The racial digital divide: Motivational, affective, and cognitive correlates of internet use. Journal of Applied Social Psychology, 31(10), 2019–2046. https://doi.org/10.1111/j.1559-1816.2001.tb00162.x.
Kamilaris, A., Kartakoullis, A., & Prenafeta-Boldú, F. X. (2017). A review on the practice of big data analysis in agriculture. Computers and Electronics in Agriculture, 143, 23–37. https://doi.org/10.1016/j.compag.2017.09.037.
Kaplan, A. M., & Haenlein, M. (2010). Users of the world, unite! The challenges and opportunities of Social Media. Business Horizons, 53(1), 59–68. https://doi.org/10.1016/j.bushor.2009.09.003.
Karahanna, E., & Straub, D. W. (1999). The psychological origins of perceived usefulness and ease-of-use. Information & Management, 35(4), 237–250. https://doi.org/10.1016/S0378-7206(98)00096-2.
Kernecker, M., Knierim, A., Wurbs, A., Kraus, T., & Borges, F. (2020). Experience versus expectation: Farmers’ perceptions of smart farming technologies for cropping systems across Europe. Precision Agriculture, 21, 34–50. https://doi.org/10.1007/s11119-019-09651-z.
Krippendorff, K. (2013). Content analysis: An introduction to its methodology. California: SAGE.
Krotov, V., & Silva, L. (2018). Legality and ethics of web scraping. In AMCIS 2018 proceedings. https://aisel.aisnet.org/amcis2018/DataScience/Presentations/17.
Kshetri, N. (2014). The emerging role of Big Data in key development issues: Opportunities, challenges, and concerns. Big Data & Society, 1(2), 205395171456422. https://doi.org/10.1177/2053951714564227.
Kwak, H., Lee, C., Park, H., & Moon, S. (2010). What is Twitter, a social network or a news media? In Proceedings of the 19th international conference on world wide web - WWW ’10, 591. https://doi.org/10.1145/1772690.1772751.
Latta, R. E. (2018, July 24). Text - H.R.4881 - 115th Congress (2017–2018): Precision Agriculture Connectivity Act of 2018 [Webpage]. https://www.congress.gov/bill/115th-congress/house-bill/4881/text..
Lee, G., & Kwak, Y. H. (2012). An open government maturity model for social media-based public engagement. Government Information Quarterly, 29(4), 492–503. https://doi.org/10.1016/j.giq.2012.06.001.
Lesser, A. (2014, October 8). Big data and big agriculture. https://gigaom.com/report/big-data-and-big-agriculture/..
Lipizzi, C., Iandoli, L., & Ramirez Marquez, J. E. (2015). Extracting and evaluating conversational patterns in social media: A socio-semantic analysis of customers’ reactions to the launch of new products using Twitter streams. International Journal of Information Management, 35(4), 490–503. https://doi.org/10.1016/j.ijinfomgt.2015.04.001.
Lleida University. (2020). Precision agriculture definitions. https://www.grap.udl.cat/en/presentation/pa_definitions.html..
Lowenberg-DeBoer, J., & Erickson, B. (2019). Setting the record straight on precision agriculture adoption. Agronomy Journal, 111(4), 1552. https://doi.org/10.2134/agronj2018.12.0779.
Lowenberg-DeBoer, J., Huang, I. Y., Grigoriadis, V., & Blackmore, S. (2019). Economics of robots and automation in field crop production. Precision Agriculture. https://doi.org/10.1007/s11119-019-09667-5.
Lynch, C. (2015, October 15). Stephen Hawking on the future of capitalism and inequality. CounterPunch.Org. https://www.counterpunch.org/2015/10/15/stephen-hawkings-on-the-tuture-of-capitalism-and-inequality/..
McCarthy, N., Lipper, L., & Zilberman, D. (2017). Economics of climate smart agriculture: An overview. In Climate smart agriculture: Building resilience to climate change (1st Ed.). Springer.
Misaki, E., Apiola, M., Gaiani, S., & Tedre, M. (2018). Challenges facing sub-Saharan small-scale farmers in accessing farming information through mobile phones: A systematic literature review. The Electronic Journal of Information Systems in Developing Countries, 84(4), e12034. https://doi.org/10.1002/isd2.12034.
Moreno, M. A., Goniu, N., Moreno, P. S., & Diekema, D. (2013). Ethics of social media research: Common concerns and practical considerations. Cyberpsychology, Behavior and Social Networking, 16(9), 708–713. https://doi.org/10.1089/cyber.2012.0334.
Novak, P. K., Smailović, J., Sluban, B., & Mozetič, I. (2015). Sentiment of emojis. PLoS ONE. https://doi.org/10.1371/journal.pone.0144296.
Ofori, M., & El-Gayar, O. (2019). The state and future of smart agriculture: Insights from mining social media. IEEE International Conference on Big Data (Big Data), 2019, 5152–5161. https://doi.org/10.1109/BigData47090.2019.9006587.
Özdemir, V., & Hekim, N. (2018). Birth of industry 5.0: making sense of big data with artificial intelligence, “The Internet of Things” and next-generation technology policy. OMICS: A Journal of Integrative Biology, 22(1), 65–76. https://doi.org/10.1089/omi.2017.0194.
Pathak, H. S., Brown, P., & Best, T. (2019). A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agriculture, 20(6), 1292–1316. https://doi.org/10.1007/s11119-019-09653-x.
Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69. https://doi.org/10.1016/j.protcy.2013.11.010.
Porter, J. R., Xie, L., Challinor, A. J., Cochrane, K., Howden, S. M., Iqbal, M. M., et al. (2014). Food security and food production systems. In K. Hakala & P. Aggarwal (Eds.), Climate change 2014: Impacts, adaptation, and vulnerability. Part A: Global and sectoral aspects. Contribution of working group II to the fifth assessment report of the intergovernmental panel on climate change (pp. 659–708). Cambridge: Cambridge University Press.
Preissing, J., Leeuwis, C., Hall, A., van Weperen, W., & Food and Agriculture Organization of the United Nations (Eds.). (2013). Facing the challenges of climate change and food security: The role of research, extension and communication for development. Food and Agriculture Organization of the United Nations.
Read, W., Robertson, N., & McQuilken, L. (2011). A novel romance: The technology acceptance model with emotional attachment. Australasian Marketing Journal (AMJ), 19(4), 223–229. https://doi.org/10.1016/j.ausmj.2011.07.004.
Robert, P. C. (2002). Precision agriculture: A challenge for crop nutrition management. In W. J. Horst, A. Bürkert, N. Claassen, H. Flessa, W. B. Frommer, H. Goldbach, W. Merbach, H.-W. Olfs, V. Römheld, B. Sattelmacher, U. Schmidhalter, M. K. Schenk, & N. v. Wirén (Eds.), Progress in plant nutrition: Plenary lectures of the XIV international plant nutrition colloquium: Food security and sustainability of agro-ecosystems through basic and applied research (pp. 143–149). Springer, Netherlands. https://doi.org/10.1007/978-94-017-2789-1_11.
Robson, C. (2002). Real world research: A resource for social scientists and practitioner-researchers (2nd ed.). Oxford: Wiley-Blackwell.
Roser, M. (2020). Employment in agriculture. Our World in Data. https://ourworldindata.org/employment-in-agriculture..
Runge, K. K., Yeo, S. K., Cacciatore, M., Scheufele, D. A., Brossard, D., Xenos, M., et al. (2013). Tweeting nano: How public discourses about nanotechnology develop in social media environments. Journal of Nanoparticle Research. https://doi.org/10.1007/s11051-012-1381-8.
Saidu, A., Clarkson, A. M., Adamu, S. H., Mohammed, M., & Jibo, I. (2017). Application of ICT in agriculture: Opportunities and challenges in developing countries. International Journal of Computer Science and Mathematical Theory, 3(1), 11.
Saravanan, M., & Perepu, S. K. (2019). Realizing social-media-based analytics for smart agriculture. The Review of Socionetwork Strategies, 13(1), 33–53. https://doi.org/10.1007/s12626-019-00035-3.
Say, S. M., Keskin, M., Sehri, M., & Sekerli, Y. E. (2017). Adoption of precision agriculture technologies in developed and developing countries. 14.
Statista. (2018). Number of social media users worldwide 2010–2021. Statista. https://www.statista.com/statistics/278414/number-of-worldwide-social-network-users/..
Steenwerth, K. L., Hodson, A. K., Bloom, A. J., Carter, M. R., Cattaneo, A., Chartres, C. J., et al. (2014). Climate-smart agriculture global research agenda: Scientific basis for action. Agriculture & Food Security, 3(1), 11. https://doi.org/10.1186/2048-7010-3-11.
Stevens, T., Aarts, N., Termeer, C., & Dewulf, A. (2016). Social media as a new playing field for the governance of agro-food sustainability. Current Opinion in Environmental Sustainability, 18, 99–106. https://doi.org/10.1016/j.cosust.2015.11.010.
Sykuta, M. E. (2016). Big data in agriculture: Property rights, privacy and competition in ag data services. International Food and Agribusiness Management Review Special Issue, 19(A), 18.
Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6.
Walter, A., Finger, R., Huber, R., & Buchmann, N. (2017). Opinion: Smart farming is key to developing sustainable agriculture. Proceedings of the National Academy of Sciences, 114(24), 6148–6150. https://doi.org/10.1073/pnas.1707462114.
Wang, Y., Jin, L., & Mao, H. (2019). Farmer cooperatives’ intention to adopt agricultural information technology—Mediating effects of attitude. Information Systems Frontiers, 21(3), 565–580. https://doi.org/10.1007/s10796-019-09909-x.
Weltzien, C. (2016). Digital agriculture—or why agriculture 4.0 still offers only modest returns. Landtechnik, 71(2), 66–68.
Williams, H. T. P., McMurray, J. R., Kurz, T., & Hugo Lambert, F. (2015). Network analysis reveals open forums and echo chambers in social media discussions of climate change. Global Environmental Change, 32, 126–138. https://doi.org/10.1016/j.gloenvcha.2015.03.006.
Wiseman, L., Sanderson, J., Zhang, A., & Jakku, E. (2019). Farmers and their data: An examination of farmers’ reluctance to share their data through the lens of the laws impacting smart farming. NJAS - Wageningen Journal of Life Sciences, 90–91, 100301. https://doi.org/10.1016/j.njas.2019.04.007.
Wojcik, S., & Hughes, A. (2019, April 24). How Twitter users compare to the general public. Pew Research Center: Internet, Science & Tech. https://www.pewresearch.org/internet/2019/04/24/sizing-up-twitter-users/..
Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M.-J. (2017). Big data in smart farming—A review. Agricultural Systems, 153, 69–80. https://doi.org/10.1016/j.agsy.2017.01.023.
Wolfert, S., Goense, D., & Sorensen, C. A. G. (2014). A future internet collaboration platform for safe and healthy food from farm to fork. In 2014 annual SRII global conference (pp. 266–273). https://doi.org/10.1109/SRII.2014.47.
World Bank. (2019, December 4). Climate smart agriculture investment plans: Bringing CSA to life [Text/HTML]. World Bank. https://www.worldbank.org/en/topic/agriculture/publication/climate-smart-agriculture-investment-plans-bringing-climate-smart-agriculture-to-life..
World Bank. (2020). Climate-smart agriculture [Text/HTML]. World Bank. https://www.worldbank.org/en/topic/climate-smart-agriculture.
Wuebbles, D. J., Fahey, D. W., Hibbard, K. A., DeAngelo, B., Doherty, S., Hayhoe, K., et al. (2017). Executive summary. In D. J. Wuebbles, D. W. Fahey, K. A. Hibbard, D. J. Dokken, B. C. Stewart, & T. K. Maycock (Eds.), Climate science special report: Fourth national climate assessment (Vol. I, pp. 12–34). U.S. Global Change Research Program. https://doi.org/10.7930/J0DJ5CTG.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Ofori, M., El-Gayar, O. Drivers and challenges of precision agriculture: a social media perspective. Precision Agric 22, 1019–1044 (2021). https://doi.org/10.1007/s11119-020-09760-0
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11119-020-09760-0