Mapping sub-field maize yields in Nebraska, USA by combining remote sensing imagery, crop simulation models, and machine learning

  • Graham R. JeffriesEmail author
  • Timothy S. Griffin
  • David H. Fleisher
  • Elena N. Naumova
  • Magaly Koch
  • Brian D. Wardlow


Crop yield maps are valuable for many applications in precision agriculture, but are often inaccessible to growers and researchers wishing to better understand yield determinants and improve site-specific management strategies. A method for mapping sub-field crop yields from remote sensing imagery could increase the availability of crop yield maps. A variation of the scalable crop yield mapping approach (SCYM, Lobell et al. in Remote Sensing of Environment 164:324–333, 2015) was developed and tested for estimating sub-field maize (Zea mays L.) yields at 10–30 m without the use of site-specific input data. The method was validated using harvester yield monitor records for 21 site-years for irrigated and rainfed fields in eastern Nebraska, USA. Prediction error ranged greatly across site-years, with relative RMSE scores of 10.8 to 38.5%, and R2 values of 0.003 to 0.37. Significant proportional bias was detected in the predictions, but could be corrected with a small amount of ground truth data. Crop yield prediction accuracies without calibration were suitable for some precision applications such as mapping relative yields and delineating management zones, but model improvements or calibration datasets are needed for applications requiring absolute yield estimates.


Remote sensing Crop simulation Yield mapping Machine learning Yield monitor 



This work was supported by the National Science Foundation under Grant #0966093, Integrative Graduate Education and Research Traineeship (IGERT) Program on Water Diplomacy at Tufts University. We thank the University of Nebraska – Lincoln’s Carbon Sequestration Program for sharing yield monitor data and the Center for Advanced Land Management Information Technologies (CALMIT) for providing AISA hyperspectral imagery.

Supplementary material

11119_2019_9689_MOESM1_ESM.docx (512 kb)
Supplementary material 1 (DOCX 511 kb)


  1. Asseng, S., et al. (2013). Uncertainty in simulating wheat yields under climate change. Nature Climate Change, 3, 827.CrossRefGoogle Scholar
  2. Azzari, G., Jain, M., & Lobell, D. B. (2017). Towards fine resolution global maps of crop yields: Testing multiple methods and satellites in three countries. Remote Sensing of Environment, 202, 129–141.CrossRefGoogle Scholar
  3. Bernstein, L.S. et al. (2005). Validation of the QUick atmospheric correction (QUAC) algorithm for VNIR-SWIR multi- and hyperspectral imagery, Defense and Security, (p. 11), SPIE.Google Scholar
  4. Bland, J. M., & Altman, D. G. (1999). Measuring agreement in method comparison studies. Statistical Methods in Medical Research, 8(2), 135–160.CrossRefGoogle Scholar
  5. Burke, M., & Lobell, D. B. (2017). Satellite-based assessment of yield variation and its determinants in smallholder African systems. PNAS, 114(9), 2189–2194.CrossRefGoogle Scholar
  6. Cassman, K. G. (1999). Ecological intensification of cereal production systems: Yield potential, soil quality, and precision agriculture. Proceedings of the National Academy of Sciences, 96(11), 5952–5959.CrossRefGoogle Scholar
  7. Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. Annals of Statistics, 29(5), 1189–1232.CrossRefGoogle Scholar
  8. Gitelson, A. A., et al. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 1248.CrossRefGoogle Scholar
  9. Godfray, H. C. J., & Garnett, T. (2014). Food security and sustainable intensification. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1639), 20120273.CrossRefGoogle Scholar
  10. HarvestChoice (IFPRI), International Research Institute for Climate and Society and Michigan State University. (2015). Global high-resolution soil profile database for crop modeling applications, Harvard Dataverse.Google Scholar
  11. Hengl, T., et al. (2014). SoilGrids1 km—Global soil information based on automated mapping. PLoS ONE, 9(8), e105992.CrossRefGoogle Scholar
  12. Hijmans, R. J. (2016). raster: Geographic data analysis and modeling (version 2.5-8), pp. R package.Google Scholar
  13. Hoogenboom, G. et al. (2015). Decision support system for agrotechnology transfer (DSSAT) version 4.6. DSSAT Foundation, Prosser, Washington.Google Scholar
  14. Jain, M., et al. (2017). Using satellite data to identify the causes of and potential solutions for yield gaps in India’s Wheat Belt. Environmental Research Letters, 12(9), 094011.CrossRefGoogle Scholar
  15. Jin, Z., Azzari, G., Burke, M., Aston, S., & Lobell, B. D. (2017a). Mapping smallholder yield heterogeneity at multiple scales in eastern Africa. Remote Sensing, 9(9), 931.CrossRefGoogle Scholar
  16. Jin, Z., Azzari, G., & Lobell, D. B. (2017b). Improving the accuracy of satellite-based high-resolution yield estimation: A test of multiple scalable approaches. Agricultural and Forest Meteorology, 247, 207–220.CrossRefGoogle Scholar
  17. Jones, J. W., et al. (2003). The DSSAT cropping system model. European Journal of Agronomy, 18(3–4), 235–265.CrossRefGoogle Scholar
  18. Lobell, D. B., Thau, D., Seifert, C., Engle, E., & Little, B. (2015). A scalable satellite-based crop yield mapper. Remote Sensing of Environment, 164, 324–333.CrossRefGoogle Scholar
  19. Masek, J. G., et al. (2013). LEDAPS calibration, reflectance, atmospheric correction preprocessing code, version 2. Oak Ridge, Tennessee, USA: ORNL DAAC.Google Scholar
  20. Panda, S. S., Ames, D. P., & Panigrahi, S. (2010). Application of vegetation indices for agricultural crop yield prediction using neural network techniques. Remote Sensing, 2(3), 673–696.CrossRefGoogle Scholar
  21. Peel, M. C., Finlayson, B. L., & McMahon, T. A. (2007). Updated world map of the Köppen-Geiger climate classification. Hydrology and Earth System Sciences, 11(5), 1633–1644.CrossRefGoogle Scholar
  22. Peralta, N., Assefa, Y., Du, J., Barden, C., & Ciampitti, I. (2016). Mid-season high-resolution satellite imagery for forecasting site-specific corn yield. Remote Sensing, 8(10):848.CrossRefGoogle Scholar
  23. Schepers, A. R., et al. (2004). Appropriateness of management zones for characterizing spatial variability of soil properties and irrigated corn yields across years. Agronomy Journal, 96(1), 195–203.CrossRefGoogle Scholar
  24. Schimmelpfennig, D. (2016). Farm profits and adoption of precision agriculture. Economic Research Report ERR-217. USDA-ERS.Google Scholar
  25. Sibley, A. M., Grassini, P., Thomas, N. E., Cassman, K. G., & Lobell, D. B. (2014). Testing remote sensing approaches for assessing yield variability among maize fields. Agronomy Journal, 106, 24–32.CrossRefGoogle Scholar
  26. Simbahan, G., Dobermann, A., & Ping, J. L. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96(4), 1091–1102.CrossRefGoogle Scholar
  27. Suyker, A., 2016. AmeriFlux US-Ne1, 2, and 3 Mead, Nebraska, USA, United States.Google Scholar
  28. Suyker, A. E., & Verma, S. B. (2009). Evapotranspiration of irrigated and rainfed maize–soybean cropping systems. Agricultural and Forest Meteorology, 149(3–4), 443–452.CrossRefGoogle Scholar
  29. Thenkabail, P., Smith, R. B., & De Pauw, E. (2002). Evaluation of narrowband and broadband vegetation indices for determining optimal hyperspectral wavebands for agricultural crop characterization. Photogrammetric Engineering and Remote Sensing, 68, 607–621.Google Scholar
  30. Yang, C. (2015). Hyperspectral imagery for mapping crop yield for precision agriculture. In B. Park & R. Lu (Eds.), Hyperspectral imaging technology in food and agriculture (pp. 289–304). New York, New York, NY: Springer.CrossRefGoogle Scholar
  31. Yang, C., & Everitt, J. H. (2002). Relationships between yield monitor data and airborne multidate multispectral digital imagery for grain sorghum. Precision Agriculture, 3(4), 373–388.CrossRefGoogle Scholar
  32. Zhang, N., Wang, M., & Wang, N. (2002). Precision agriculture—A worldwide overview. Computers and Electronics in Agriculture, 36(2), 113–132.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Graham R. Jeffries
    • 1
    Email author
  • Timothy S. Griffin
    • 1
  • David H. Fleisher
    • 2
  • Elena N. Naumova
    • 1
  • Magaly Koch
    • 3
  • Brian D. Wardlow
    • 4
  1. 1.Friedman School of Nutrition Science and PolicyTufts UniversityBostonUSA
  2. 2.Adaptive Cropping Systems Lab.BeltsvilleUSA
  3. 3.Center for Remote SensingBoston UniversityBostonUSA
  4. 4.Center for Advanced Land Mgmt. Info. Tech.LincolnUSA

Personalised recommendations