Akhtman, Y., Golubeva, E., Tutubalina, O., & Zimin, M. (2017). Application of hyperspectural images and ground data for precision farming. Geography, Environment, Sustainability,10(4), 117–128. https://doi.org/10.24057/2071-9388-2017-10-4-117-128.
Article
Google Scholar
Aubert, B., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems,54(1), 510–520. https://doi.org/10.1016/j.dss.2012.07.002.
Article
Google Scholar
Batte, M., & Arnholt, M. (2003). Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Computers and Electronics in Agriculture,38(2), 125–139. https://doi.org/10.1016/S0168-1699(02)00143-6.
Article
Google Scholar
Blackstock, K., Ingram, J., Burton, R., Brown, K., & Slee, B. (2010). Understanding and influencing behaviour change by farmers to improve water quality. Science of the Total Environment,408(23), 5631–5638. https://doi.org/10.1016/j.scitotenv.2009.04.029.
CAS
Article
PubMed
Google Scholar
Bolker, B., Brooks, M., Clark, C., Geange, S., Poulsen, J., Stevens, M., et al. (2009). Generalized linear mixed models: A practical guide for ecology and evolution. Trends in Ecology & Evolution,24(3), 127–135. https://doi.org/10.1016/j.tree.2008.10.008.
Article
Google Scholar
Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture,5(4), 359–387. https://doi.org/10.1023/B:PRAG.0000040806.39604.aa.
Article
Google Scholar
Bramley, R. (2009). Lessons from nearly 20 years of Precision Agriculture research, development, and adoption as a guide to its appropriate application. Crop and Pasture Science,60(3), 197–217. https://doi.org/10.1071/CP08304.
Article
Google Scholar
Burke, P. (1991). Identity processes and social stress. American Sociological Review,56(6), 836–849. https://doi.org/10.2307/2096259.
Article
Google Scholar
Burton, R. (2004). Seeing through the ‘good farmer’s’ eyes: Towards developing an understanding of the social symbolic value of ‘productivist’ behaviour. Sociologia Ruralis,44(2), 195–215. https://doi.org/10.1111/j.1467-9523.2004.00270.x.
Article
Google Scholar
Burton, R., & Wilson, G. (2006). Injecting social psychology theory into conceptualisations of agricultural agency: Towards a post-productivist farmer self-identity? Journal of Rural Studies,22(1), 95–115. https://doi.org/10.1016/j.jrurstud.2005.07.004.
Article
Google Scholar
Busse, M., Doernberg, A., Siebert, R., Kuntosch, A., Schwerdtner, W., König, B., et al. (2014). Innovation mechanisms in German precision farming. Precision Agriculture,15(4), 403–426. https://doi.org/10.1007/s11119-013-9337-2.
Article
Google Scholar
Carolan, M. (2017). Agro-digital governance and life itself: Food politics at the intersection of code and affect. Sociologia Ruralis,57(S1), 816–835. https://doi.org/10.1111/soru.12153.
Article
Google Scholar
Clasen, M. (2016). Farming 4.0 und andere anwendungen des internet der dinge. In Ruckelshausen, A. et al. (Eds.), Proceedings of GIL annual meeting 2016. Informatik in der Land-, Forst- und Ernährungswirtschaft. Fokus: Intelligente Systeme—Stand der Technik und neue Möglichkei-ten (pp. 15–18). Bonn: Koellen.
Cox, S. (2002). Information technology: The global key to precision agriculture and sustainability. Computers and Electronics in Agriculture,36(2–3), 93–111. https://doi.org/10.1016/S0168-1699(02)00095-9.
Article
Google Scholar
Daberkow, S., & McBride, G. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture,4(2), 163–177. https://doi.org/10.1023/A:1024557205871.
Article
Google Scholar
del Mármol, C., Celigueta, G., & Vaccaro, I. (2018). Socio-economic transitions and everyday life changes in the rural world: Pyrenean households and their contemporary economic history. Journal of Agrarian Change. https://doi.org/10.1111/joac.12254.
Article
Google Scholar
Driessen, C., & Heutinck, L. (2015). Cows desiring to be milked? Milking robots and the co evolution of ethics and technology on Dutch dairy farms. Agriculture and Human Values,32(1), 3–20. https://doi.org/10.1007/s10460-014-9515-5.
Article
Google Scholar
Fountas, S., Ess, D., Sørensen, C., Hawkings, S., Blumhoff, G., Blackmore, B., et al. (2005). Farmer experience with precision agriculture in Denmark and the US Eastern Corn Belt. Precision Agriculture,6(2), 121–141. https://doi.org/10.1007/s11119-004-1030-z.
Article
Google Scholar
Freudenburg, W., Frickel, R., & Gramling, S. (1995). Beyond the nature/society divide: Learning to think about a mountain. Sociological Forum,10(3), 361–392. https://doi.org/10.1007/BF02095827.
Article
Google Scholar
Gardezi, M., & Arbuckle, J. (2017). Spatially representing vulnerability to extreme rain events using midwestern farmers’ objective and perceived attributes of adaptive capacity. Risk Analysis: An Official Publication of the Society for Risk Analysis. https://doi.org/10.1111/risa.12943.
Article
Google Scholar
Gardezi, M., & Arbuckle, J. (2018). Techno-optimism and farmers’ attitudes toward climate change adaptation. Environment and Behavior. https://doi.org/10.1177/0013916518793482.
Article
Google Scholar
Gardezi, M., & Arbuckle, J. G. (2019). The influence of objective and perceived adaptive capacity on Midwestern farmers’ use of cover crops. Weather, Climate and Society. https://doi.org/10.1175/WCAS-D-18-0086.1.
Article
Google Scholar
Gebbers, R., & Adamchuk, V. (2010). Precision agriculture and food security. Science (New York, N.Y.),327(5967), 828–831.
CAS
Article
Google Scholar
Higgins, V., Bryant, M., Howell, A., & Battersby, J. (2017). Ordering adoption: Materiality, knowledge and farmer engagement with precision agriculture technologies. Journal of Rural Studies,55(C), 193–202. https://doi.org/10.1016/j.jrurstud.2017.08.011.
Article
Google Scholar
Isik, M., & Khanna, M. (2003). Stochastic technology, risk preferences, and adoption of site specific technologies. American Journal of Agricultural Economics,85(2), 305–317. https://doi.org/10.1111/1467-8276.00121.
Article
Google Scholar
Jensen, H., Jacobsen, G., Pedersen, L., & Tavella, S. (2012). Socioeconomic impact of widespread adoption of precision farming and controlled traffic systems in Denmark. Precision Agriculture,13(6), 661–677. https://doi.org/10.1007/s11119-012-9276-3.
Article
Google Scholar
Khanna, M. (2001). Sequential adoption of site-specific technologies and its implications for nitrogen productivity: A double selectivity model. American Journal of Agricultural Economics,83(1), 35–51. https://doi.org/10.1111/0002-9092.00135.
Article
Google Scholar
Khanna, M., Epouhe, O., & Hornbaker, R. (1999). Site-specific crop management: Adoption patterns and incentives. Review of Agricultural Economics,21(2), 455–472. https://doi.org/10.2307/1349891.
Article
Google Scholar
Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture,12(1), 2–17. https://doi.org/10.1007/s11119-009-9150-0.
Article
Google Scholar
Lambert, D., English, B., Harper, D., Larkin, S., Larson, J., Mooney, D., et al. (2014). Adoption and frequency of precision soil testing in cotton production. Journal of Agricultural and Resource Economics,39(1), 106–123.
Google Scholar
Loy, A., Hobbs, J., Arbuckle Jr. J., Morton, L., Prokopy, L., Haigh, T., et al. (2013). Farmer perspectives on agriculture and weather variability in the Corn Belt: A Statistical Atlas. CSCAP 0153 2013. Ames, IA: Cropping Systems Coordinated Agricultural Project (CAP): Climate Change, Mitigation, and Adaptation in Corn-based Cropping Systems. Accessed August 1, 2019, from https://store.extension.iastate.edu/product/14459.
Mackrell, D., Kerr, D., & Von Hellens, L. (2009). A qualitative case study of the adoption and use of an agricultural decision support system in the Australian cotton industry: The socio-technical view. Decision Support Systems,47(2), 143–153. https://doi.org/10.1016/j.dss.2009.02.004.
Article
Google Scholar
McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture,6(1), 7–23. https://doi.org/10.1007/s11119-005-0681-8.
Article
Google Scholar
McGuire, J., Morton, L., Arbuckle, J., & Cast, A. (2015). Farmer identities and responses to the social–biophysical environment. Journal of Rural Studies,39(C), 145–155. https://doi.org/10.1016/j.jrurstud.2015.03.011.
Article
Google Scholar
McGuire, J., Morton, L., & Cast, W. (2013). Reconstructing the good farmer identity: Shifts in farmer identities and farm management practices to improve water quality. Agriculture and Human Values,30(1), 57–69. https://doi.org/10.1007/s10460-012-9381-y.
Article
Google Scholar
Morton, L. W., Hobbs, J., Arbuckle, J. G., & Loy, A. (2015). Upper Midwest climate variations: Farmer responses to excess water risks. Journal of Environmental Quality,44(3), 810–822. https://doi.org/10.2134/jeq2014.08.0352.
CAS
Article
PubMed
Google Scholar
Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture,18(5), 701–716. https://doi.org/10.1007/s11119-016-9482-5.
Article
Google Scholar
Pavón-Pulido, N., López-Riquelme, J. A., Torres, R., Morais, R., & Pastor, J. A. (2017). New trends in precision agriculture: A novel cloud-based system for enabling data storage and agricultural task planning and automation. Precision Agriculture,18(6), 1038–1068. https://doi.org/10.1007/s11119-017-9532-7.
Article
Google Scholar
Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology,8, 61–69. https://doi.org/10.1016/j.protcy.2013.11.010.
Article
Google Scholar
Prokopy, L., Floress, K., Klotthor-Weinkauf, D., & Baumgart-Getz, A. (2008). Determinants of agricultural best management practice adoption: Evidence from the literature. Journal of Soil and Water Conservation,63(5), 300–311. https://doi.org/10.2489/jswc.63.5.300.
Article
Google Scholar
Reichardt, M., & Jürgens, C. (2009). Adoption and perspective of precision farming (PF) in Germany: Results of several surveys among the different agricultural target groups. Precision Agriculture,10(1), 73–94. https://doi.org/10.1007/s11119-008-9101-1.
Article
Google Scholar
Reichardt, M., Jürgens, C., Klöble, U., Hüter, J., & Moser, K. (2009). Dissemination of precision farming in Germany: Acceptance, adoption, obstacles, knowledge transfer and training activities. Precision Agriculture,10(6), 525–545. https://doi.org/10.1007/s11119-009-9112-6.
Article
Google Scholar
Roberts, R., English, B., Larson, J., & Cochran, R. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics,36(1), 143–158. https://doi.org/10.1017/S107407080002191X.
Article
Google Scholar
Robertson, H., Llewellyn, R., Mandel, R., Lawes, R., Bramley, R., Swift, L., et al. (2011). Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agriculture,13(2), 181–199. https://doi.org/10.1007/s11119-011-9236-3.
Article
Google Scholar
Roesch-McNally, G., Arbuckle, J. G., & Tyndall, J. C. (2018). Soil as social-ecological feedback: Examining the “Ethic” of Soil Stewardship among Corn Belt Farmers. Rural Sociology. https://doi.org/10.1111/ruso.12167.
Article
Google Scholar
Romig, D., Garylynd, M., Harris, R., & McSweeney, K. (1995). How farmers assess soil health and quality. Journal of Soil and Water Conservation,50(3), 229–236.
Google Scholar
Rossel, R., & Bouma, J. (2016). Soil sensing: A new paradigm for agriculture. Agricultural Systems,148, 71–74. https://doi.org/10.1016/j.agsy.2016.07.001.
Article
Google Scholar
Schoengold, K., & Sunding, D. (2014). The impact of water price uncertainty on the adoption of precision irrigation systems. Agricultural Economics,45(6), 729–743. https://doi.org/10.1111/agec.12118.
Article
Google Scholar
Snijders, T., & Bosker, R. J. (1999). Multilevel analysis: An introduction to basic and advanced multilevel modeling. Thousand Oaks, CA: SAGE.
Google Scholar
Stafford, J. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research,76(3), 267–275. https://doi.org/10.1006/jaer.2000.0577.
Article
Google Scholar
Stenholm, P., & Hytti, U. (2014). In search of legitimacy under institutional pressures: A case study of producer and entrepreneur farmer identities. Journal of Rural Studies,35(C), 133–142. https://doi.org/10.1016/j.jrurstud.2014.05.001.
Article
Google Scholar
Stryker, S. (1980). Symbolic interactionism: A social structural version (Benjamin/Cummings series in contemporary sociology). Menlo Park, CA: Benjamin/Cummings Pub.
Google Scholar
Sutherland, L., Gabriel, D., Hathaway-Jenkins, L., Pascual, U., Schmutz, U., Rigby, D., et al. (2011). The ‘Neighbourhood Effect’: A multidisciplinary assessment of the case for farmer co-ordination in agri-environmental programmes. Land Use Policy,29(3), 502–512. https://doi.org/10.1016/j.landusepol.2011.09.003.
Article
Google Scholar
Tey, Y., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture,13(6), 713–730. https://doi.org/10.1007/s11119-012-9273-6.
Article
Google Scholar
Tjur, T. (2009). Coefficients of determination in logistic regression models—A new proposal: The coefficient of discrimination. The American Statistician,63(4), 366–372. https://doi.org/10.1198/tast.2009.08210.
Article
Google Scholar
United Nations Food and Agriculture Organization. (2018). FAO’s work on agricultural innovation: Sowing the seeds of transformation to achieve the SDGs. Rome. Retreived December 14, 2018 from www.fao.org/3/ca2460en/CA2460EN.pdf.
Walton, J., Lambert, D., Roberts, R., Larson, J., English, B., Larkin, S., et al. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics,33(3), 428–448.
Google Scholar
Walton, J., Larson, J., Roberts, R., Lambert, D., English, B., Larkin, S., et al. (2010). Factors influencing farmer adoption of portable computers for site-specific management: A case study for cotton production. Journal of Agricultural and Applied Economics,42(2), 193–209. https://doi.org/10.1017/s1074070800028595.
Article
Google Scholar
Watcharaanantapong, P., Roberts, R., Lambert, D., Larson, J., Velandia, M., English, B., et al. (2014). Timing of precision agriculture technology adoption in US cotton production. Precision Agriculture,15(4), 427–446. https://doi.org/10.1007/s11119-013-9338-1.
Article
Google Scholar