Smartphone adoption and use in agriculture: empirical evidence from Germany

Abstract

Smartphone technology is promising for the future development of agriculture, as it can facilitate and improve many operational procedures and can also be combined with precision agriculture technologies. Yet, existing research on smartphone adoption in agriculture is scarce. Therefore, this paper empirically explores the factors influencing smartphone adoption by German farmers. The relationship between farmers, farm characteristics and smartphone adoption was analysed using a binomial logit model. The dataset, collected in 2016, consists of 817 German farmers and is representative in terms of age, farm size and diversification as well as regional distribution across the study area. The results indicate that, among other factors, farmers’ age, education, and farm size are determinants of smartphone adoption. Furthermore, the paper provides descriptive information about the usage of smartphone functions and agriculture-related app functions. Thus, this paper contributes to the literature by identifying key determinants of smartphone adoption in agriculture. The findings may be of interest for policy makers, researchers in the field of precision agriculture technologies as well as developers and providers of farm equipment and precision agriculture technologies that integrate with smartphones, since the paper includes information concerning smartphone use and key factors influencing smartphone adoption.

This is a preview of subscription content, log in to check access.

Notes

  1. 1.

    For an overview see Dedehayir et al. (2017).

  2. 2.

    It should be noted that there also studies that find a positive, statistically significant effect (Isgin et al. 2008) or no statistically significant effect (Daberkow and McBride 2003) of age on PAT adoption.

  3. 3.

    The reader should be cautioned that the number of female farmers in the sample is small which could limit the resilience of the statistical results.

References

  1. Abdullahi, H. S., Mahieddine, F., & Sheriff, R. E. (2015). Technology impact on agricultural productivity: A review of precision agriculture using unmanned aerial vehicles. International conference on wireless and satellite systems. In Pillai P., Hu Y., Otung I., Giambene G. (Ed) Wireless and Satellite Systems. WiSATS 2015. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Vol 154 (pp. 388–400). Cham: Springer.

  2. Adamides, G., Stylianou, A., Kosmas, P. C., & Apostolopoulos, C. D. (2013). Factors affecting PC and Internet usage by the rural population of Cyprus. Agricultural Economics Review,14(1), 16–36.

    Google Scholar 

  3. Aker, J. C. (2011). Dial “A” for agriculture: A review of information and communication technologies for agricultural extension in developing countries. Agricultural Economics,42(6), 631–647.

    Article  Google Scholar 

  4. Aker, J. C., & Mbiti, I. M. (2010). Mobile phones and economic development in Africa. Journal of Economic Perspectives,24(3), 207–232.

    Article  Google Scholar 

  5. Aldrich, J. H., & Nelson, F. D. (1984). Linear probability, logit, and probit models. Beverly Hills: Sage Publications.

    Google Scholar 

  6. Amponsah, W. A. (1995). Computer adoption and use of information services by North Carolina commercial farmers. Journal of Agricultural and Applied Economics,27(2), 565–576.

    Article  Google Scholar 

  7. Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: An empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems,54(1), 510–520.

    Article  Google Scholar 

  8. Baker, G. A. (1992). Computer adoption and use by New Mexico nonfarm agribusinesses. American Journal of Agricultural Economics,74(3), 737–744.

    Article  Google Scholar 

  9. Barcelo-Ordinas, J. M., Chanet, J.-P., Hou, K.-M., & García-Vidal, J. (2013). A survey of wireless sensor technologies applied to precision agriculture. In J. V. Stafford (Ed.), Precision agriculture’13 (pp. 801–808). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  10. Batte, M. T. (2005). Changing computer use in agriculture: Evidence from Ohio. Computers and Electronics in Agriculture,47(1), 1–13.

    Article  Google Scholar 

  11. Batte, M. T., Jones, E., & Schnitkey, G. D. (1990). Computer use by Ohio commercial farmers. American Journal of Agricultural Economics,72(4), 935–945.

    Article  Google Scholar 

  12. Baumüller, H. (2012). Facilitating agricultural technology adoption among the poor: The role of service delivery through mobile phones. ZEF Working Paper Serie No 93, University of Bonn, Center for Development Research (ZEF), Bonn.

  13. Berry, C. H. (1971). Corporate growth and diversification. The Journal of Law and Economics,14(2), 371–383.

    Article  Google Scholar 

  14. Bonke, V., Fecke, W., Michels, M., & Musshoff, O. (2018). Willingness to pay for smartphone apps facilitating sustainable crop protection. Agronomy for Sustainable Development,38(5), 1–10.

    CAS  Article  Google Scholar 

  15. Borghi, E., Avanzi, J. C., Bortolon, L., Junior, A. L., & Bortolon, E. S. O. (2016). Adoption and use of precision agriculture in Brazil: Perception of growers and service dealership. Journal of Agricultural Science,8(11), 89–104.

    Article  Google Scholar 

  16. Briggeman, B. C., & Whitacre, B. E. (2010). Farming and the internet: Reasons for non-use. Agricultural and Resource Economics Review,39(3), 571–584.

    Article  Google Scholar 

  17. Butler, M. (2011). Android: Changing the mobile landscape. IEEE Pervasive Computing,10(1), 4–7.

    Article  Google Scholar 

  18. Cameron, A. C., & Trivedi, P. K. (2010). Microeconometrics using stata. College Station: Stata press.

    Google Scholar 

  19. Carrer, M. J., de Souza Filho, H. M., & Batalha, M. O. (2017). Factors influencing the adoption of Farm Management Information Systems (FMIS) by Brazilian citrus farmers. Computers and Electronics in Agriculture,138, 11–19.

    Article  Google Scholar 

  20. Cavallo, E., Ferrari, E., Bollani, L., & Coccia, M. (2014). Attitudes and behaviour of adopters of technological innovations in agricultural tractors: A case study in Italian agricultural system. Agricultural Systems,130, 44–54.

    Article  Google Scholar 

  21. Curto, J. D., & Pinto, J. C. (2011). The corrected vif (cvif). Journal of Applied Statistics,38(7), 1499–1507.

    Article  Google Scholar 

  22. D’Antoni, J. M., Mishra, A. K., & Joo, H. (2012). Farmers’ perception of precision technology: The case of autosteer adoption by cotton farmers. Computers and Electronics in Agriculture,87, 121–128.

    Article  Google Scholar 

  23. Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture,4(2), 163–177.

    Article  Google Scholar 

  24. Dedehayir, O., Ortt, R. J., Riverola, C., & Miralles, F. (2017). Innovators and early adopters in the diffusion of innovations: A literature review. International Journal of Innovation Management,21(8), 1–27.

    Article  Google Scholar 

  25. Dehnen-Schmutz, K., Foster, G. L., Owen, L., & Persello, S. (2016). Exploring the role of smartphone technology for citizen science in agriculture. Agronomy for Sustainable Development,36(2), 1–8.

    Article  Google Scholar 

  26. Destatis. (2014). Agrarstrukturerhebung: Fachserie 3. Wiesbaden: German Federal Statistical Office.

    Google Scholar 

  27. Dill, M. D., Emvalomatis, G., Saatkamp, H., Rossi, J. A., Pereira, G. R., & Barcellos, J. O. J. (2015). Factors affecting adoption of economic management practices in beef cattle production in Rio Grande do Sul state, Brazil. Journal of Rural Studies,42, 21–28.

    Article  Google Scholar 

  28. Doss, C. R., & Morris, M. L. (2000). How does gender affect the adoption of agricultural innovations? Agricultural Economics,25(1), 27–39.

    Article  Google Scholar 

  29. Duncombe, R. (2016). Mobile phones for agricultural and rural development: A literature review and suggestions for future research. The European Journal of Development Research,28(2), 213–235.

    Article  Google Scholar 

  30. Fecke, W., Michels, M., von Hobe, C.-F., & Musshoff, O. (2018). Wie kommunizieren Landwirte in Zeiten der Digitalisierung? Berichte über Landwirtschaft—Zeitschrift für Agrarpolitik und Landwirtschaft,96(2), 1–17.

    Google Scholar 

  31. Federal Ministry of Agriculture 2016. Landwirtschaft verstehen. Im Fokus: Chancen der Digitalisierung. https://www.bmel.de/SharedDocs/Downloads/Broschueren/Landwirtschaft-verstehen-Chancen-Digitalisierung.pdf?__blob=publicationFile. Accessed 3 March 2019.

  32. Fulton, J. P. & Port, K. (2018). Precision agriculture data management. In K. Shannon, D.E. Clay and N.R. Kitchen (Ed): Precision Agriculture Basics (pp. 169–188). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  33. German Farmers‘Federation. (2014). Situationsbericht 2013/14: Trends und Fakten zur Landwirtschaft. http://media.repro-mayr.de/87/595587.pdf. Accessed 28 February 2019.

  34. Gerpott, T. J., Thomas, S., & Weichert, M. (2013a). Characteristics and mobile Internet use intensity of consumers with different types of advanced handsets: An exploratory empirical study of iPhone, Android and other web-enabled mobile users in Germany. Telecommunications Policy,37(4–5), 357–371.

    Article  Google Scholar 

  35. Gerpott, T. J., Thomas, S., & Weichert, M. (2013b). Personal characteristics and mobile Internet use intensity of consumers with computer-centric communication devices: An exploratory empirical study of iPad and laptop users in Germany. Telematics and Informatics,30(2), 87–99.

    Article  Google Scholar 

  36. Ghadim, A. K. A., & Pannell, D. J. (1999). A conceptual framework of adoption of an agricultural innovation. Agricultural Economics,21(2), 145–154.

    Article  Google Scholar 

  37. Gill, J. (2000). Generalized linear models: A unified approach. Thousands Oaks: Sage Publications.

    Google Scholar 

  38. Glenna, L. L., Jussaume, R. A., & Dawson, J. C. (2011). How farmers matter in shaping agricultural technologies: Social and structural characteristics of wheat growers and wheat varieties. Agriculture and Human Values,28(2), 213–224.

    Article  Google Scholar 

  39. Gligorević, K., Oljača, M., Radojević, R., Đokić, M., & Spalević, V. (2015). The rise of smartphones Android applications for agriculture machines, new revolution of farm machinery-field communication?: Paper presented at Second International Symposium on Agricultural Engineering, ISAE-2015, 9th-10th October 2015 (pp. 1–12). Serbia: Belgrade-Zemun.

    Google Scholar 

  40. Gloy, B. A., & Akridge, J. T. (2000). Computer and internet adoption on large US farms. The International Food and Agribusiness Management Review,3(3), 323–338.

    Article  Google Scholar 

  41. Godoe, P., & Johansen, T. (2012). Understanding adoption of new technologies: Technology readiness and technology acceptance as an integrated concept. Journal of European Psychology Students,3(1), 38–52.

    Article  Google Scholar 

  42. Hallau, L., Neumann, M., Klatt, B., Kleinhenz, B., Klein, T., Kuhn, C., et al. (2018). Automated identification of sugar beet diseases using smartphones. Plant Pathology,67(2), 399–410.

    Article  Google Scholar 

  43. Hennessy, T., Läpple, D., & Moran, B. (2016). The digital divide in farming: A problem of access or engagement? Applied Economic Perspectives and Policy,38(3), 474–491.

    Article  Google Scholar 

  44. Hirschman, E. C. (1980). Innovativeness, novelty seeking, and consumer creativity. Journal of Consumer Research,7(3), 283–295.

    Article  Google Scholar 

  45. Hoffmann, C., Al Askari, A., Hoang, K., & Doluschitz, R. (2014). Entwicklungstrends bei landwirtschaftlichen Applikationen-ein Zwischenfazit. LANDTECHNIK—Agricultural Engineering,69(5), 250–255.

    Google Scholar 

  46. Isgin, T., Bilgic, A., Forster, D. L., & Batte, M. T. (2008). Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Computers and Electronics in Agriculture,62(2), 231–242.

    Article  Google Scholar 

  47. Islam, M. S., & Grönlund, Å. (2011). Factors influencing the adoption of mobile phones among the farmers in Bangladesh: Theories and practices. ICTer,4(1), 4–14.

    Google Scholar 

  48. Jawad, H., Nordin, R., Gharghan, S., Jawad, A., & Ismail, M. (2017). Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors,17(8), 1–45.

    Article  Google Scholar 

  49. Jeffcoat, C., Davis, A. F., & Hu, W. (2012). Willingness to pay for broadband access by Kentucky farmers. Journal of Agricultural and Applied Economics,44(3), 323–334.

    Article  Google Scholar 

  50. Jensen, R. T. (2010). Information, efficiency, and welfare in agricultural markets. Agricultural Economics,41, 203–216.

    Article  Google Scholar 

  51. Jin, B. S., Yoon, S. H., & Ji, Y. G. (2013). Development of a continuous usage model for the adoption and continuous usage of a smartphone. International Journal of Human-Computer Interaction,29(9), 563–581.

    Article  Google Scholar 

  52. Kamilaris, A., & Pitsillides, A. (2016). Mobile phone computing and the internet of things: A survey. IEEE Internet of Things Journal,3, 885–898.

    Article  Google Scholar 

  53. Karahanna, E., Straub, D. W., & Chervany, N. L. (1999). Information technology adoption across time: A cross-sectional comparison of pre-adoption and post-adoption beliefs. MIS Quarterly,23(2), 183–213.

    Article  Google Scholar 

  54. Kernecker, M., Knierim, A., & Wurbs, A. (2016). Report on farmers’ needs, innovative ideas and interests: smart AKIS. Smart Farming Thematic Network. https://www.smart-akis.com/wp-content/uploads/2017/02/D2.2.-Report-on-farmers-needs.pdf. Accessed 13 February 2019.

  55. Khanna, A., & Kaur, S. (2019). Evolution of Internet of Things (IoT) and its significant impact in the field of precision agriculture. Computers and Electronics in Agriculture,157, 218–231.

    Article  Google Scholar 

  56. Kim, S. H. (2014). A study on adoption factors of Korean smartphone users: A focus on TAM (technology acceptance model) and UTAUT (unified theory of acceptance and use of technology). Advanced Science and Technology Letters,57, 27–30.

    Google Scholar 

  57. Kongaut, C., & Bohlin, E. (2016). Investigating mobile broadband adoption and usage: A case of smartphones in Sweden. Telematics and Informatics,33(3), 742–752.

    Article  Google Scholar 

  58. Lambert, D. M., English, B. C., Harper, D. C., Larkin, S. L., Larson, J. A., Mooney, D. F., et al. (2014). Adoption and frequency of precision soil testing in cotton production. Journal of Agricultural and Resource Economics,39(1), 106–123.

    Google Scholar 

  59. Larson, J. A., Roberts, R. K., English, B. C., Larkin, S. L., Marra, M. C., Martin, S. W., et al. (2008). Factors affecting farmer adoption of remotely sensed imagery for precision management in cotton production. Precision Agriculture,9(4), 195–208.

    Article  Google Scholar 

  60. Lee, S. Y. (2014). Examining the factors that influence early adopters’ smartphone adoption: The case of college students. Telematics and Informatics,31(2), 308–318.

    Article  Google Scholar 

  61. Lin, J. Y. (1991). Education and innovation adoption in agriculture: Evidence from hybrid rice in China. American Journal of Agricultural Economics,73(3), 713–723.

    Article  Google Scholar 

  62. Mansfield, E. R., & Helms, B. P. (1982). Detecting multicollinearity. The American Statistician,36(3a), 158–160.

    Article  Google Scholar 

  63. Maredia, M. K., Reyes, B., Ba, M. N., Dabire, C. L., Pittendrigh, B., & Bello-Bravo, J. (2018). Can mobile phone-based animated videos induce learning and technology adoption among low-literate farmers?: A field experiment in Burkina Faso. Information Technology for Development,24(3), 429–460.

    Article  Google Scholar 

  64. McFadden, D. (1977). Quantitative methods for analyzing travel behavior of individuals: Some recent developments. Berkeley: Institute of Transportation Studies, University of California.

    Google Scholar 

  65. McFadden, T., & Gorman, M. (2016). Exploring the concept of farm household innovation capacity in relation to farm diversification in policy context. Journal of Rural Studies,46, 60–70.

    Article  Google Scholar 

  66. Mesas-Carrascosa, F. J., Santano, D. V., Meroño, J. E., de La Orden, M. S., & García-Ferrer, A. (2015). Open source hardware to monitor environmental parameters in precision agriculture. Biosystems Engineering,137, 73–83.

    Article  Google Scholar 

  67. Mishra, A. K., & Park, T. A. (2005). An empirical analysis of Internet use by US farmers. Agricultural and Resource Economics Review,34(2), 253–264.

    Article  Google Scholar 

  68. Mishra, A. K., Williams, R. P., & Detre, J. D. (2009). Internet access and internet purchasing patterns of farm households. Agricultural and Resource Economics Review,38(2), 240–257.

    Article  Google Scholar 

  69. Mittal, S., & Mehar, M. (2012). How mobile phones contribute to growth of small farmers? Evidence from India. Quarterly Journal of International Agriculture,51(3), 227.

    Google Scholar 

  70. Morris, W., Henley, A., & Dowell, D. (2017). Farm diversification, entrepreneurship and technology adoption: Analysis of upland farmers in Wales. Journal of Rural Studies,53, 132–143.

    Article  Google Scholar 

  71. Ortbach, K., Brockmann, T., & Stieglitz, S. (2014). Drivers for the adoption of mobile device management in organizations. Paper presented at the 22nd European Conference on Information Systems, ECIS (2014).

  72. Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture,18(5), 701–716.

    Article  Google Scholar 

  73. Paxton, K. W., Mishra, A. K., Chintawar, S., Roberts, R. K., Larson, J. A., English, B. C., et al. (2011). Intensity of precision agriculture technology adoption by cotton producers. Agricultural and Resource Economics Review,40(1), 133–144.

    Article  Google Scholar 

  74. Peres, E., Fernandes, M. A., Morais, R., Cunha, C. R., López, J. A., Matos, S. R., et al. (2011). An autonomous intelligent gateway infrastructure for in-field processing in precision viticulture. Computers and Electronics in Agriculture,78(2), 176–187.

    Article  Google Scholar 

  75. Philip, L., Cottrill, C., Farrington, J., Williams, F., & Ashmore, F. (2017). The digital divide: Patterns, policy and scenarios for connecting the ‘final few’ in rural communities across Great Britain. Journal of Rural Studies,54, 386–398.

    Article  Google Scholar 

  76. Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology,8, 61–69.

    Article  Google Scholar 

  77. Pongnumkul, S., Chaovalit, P., & Surasvadi, N. (2015). Applications of smartphone-based sensors in agriculture: A systematic review of research. Journal of Sensors,2015, 1–18.

    Article  Google Scholar 

  78. Poolsawas, S., & Napasintuwong, O. (2013). Farmer innovativeness and hybrid maize diffusion in Thailand. Journal of International Agricultural and Extension Education,20(2), 51–65.

    Article  Google Scholar 

  79. Poushter, J. (2016). Smartphone ownership and internet usage continues to climb in emerging economies. Pew Research Center,22, 1–45.

    Google Scholar 

  80. Puspitasari, L., & Ishii, K. (2016). Digital divides and mobile Internet in Indonesia: Impact of smartphones. Telematics and Informatics,33(2), 472–483.

    Article  Google Scholar 

  81. Reichardt, M., & Jürgens, C. (2009). Adoption and future perspective of precision farming in Germany: Results of several surveys among different agricultural target groups. Precision Agriculture,10(1), 73–94.

    Article  Google Scholar 

  82. Roberts, R. K., English, B. C., Larson, J. A., Cochran, R. L., Goodman, W. R., Larkin, S. L., et al. (2004). Adoption of site-specific information and variable-rate technologies in cotton precision farming. Journal of Agricultural and Applied Economics,36(1), 143–158.

    Article  Google Scholar 

  83. Rogers, E. M. (2003). Diffusions of innovations (5th ed.). New York: The Free Press.

    Google Scholar 

  84. Rolfe, J., Gregor, S., & Menzies, D. (2003). Reasons why farmers in Australia adopt the Internet. Electronic Commerce Research and Applications,2(1), 27–41.

    Article  Google Scholar 

  85. Rose, D. C., Sutherland, W. J., Parker, C., Lobley, M., Winter, M., Morris, C., et al. (2016). Decision support tools for agriculture: Towards effective design and delivery. Agricultural Systems,149, 165–174.

    Article  Google Scholar 

  86. Salemink, K., Strijker, D., & Bosworth, G. (2017). Rural development in the digital age: A systematic literature review on unequal ICT availability, adoption, and use in rural areas. Journal of Rural Studies,54, 360–371.

    Article  Google Scholar 

  87. Smith, A., Goe, W. R., Kenney, M., & Morrison Paul, C. J. (2004). Computer and Internet use by Great Plains farmers. Journal of Agricultural and Resource Economics,70(3), 481–500.

    Google Scholar 

  88. Srinuan, C., Srinuan, P., & Bohlin, E. (2012). An analysis of mobile Internet access in Thailand: Implications for bridging the digital divide. Telematics and Informatics,29(3), 254–262.

    Article  Google Scholar 

  89. Tamirat, T. W., Pedersen, S. M., & Lind, K. M. (2018). Farm and operator characteristics affecting adoption of precision agriculture in Denmark and Germany. Acta Agriculturae Scandinavica, Section B—Soil & Plant Science,68(4), 349–357.

    Article  Google Scholar 

  90. Taylor, S., & Todd, P. (1995). Assessing IT usage: The role of prior experience. MIS Quarterly,19(4), 561–570.

    Article  Google Scholar 

  91. Teacher, A. G. F., Griffiths, D. J., Hodgson, D. J., & Inger, R. (2013). Smartphones in ecology and evolution: A guide for the app-rehensive. Ecology and Evolution,3(16), 5268–5278.

    PubMed  PubMed Central  Article  Google Scholar 

  92. Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture,13(6), 713–730.

    Article  Google Scholar 

  93. Tey, Y. S., Brindal, M., & Lim, C. D. (2015). Use of variable rate application in soil fertility management by small farmers: Status, issues, and prospects. In R. Lal & B. A. Stewart (Eds.), Soil-Specific Farming (1st ed., pp. 198–211). Bocan Raton: CRC Press.

    Google Scholar 

  94. Tiffin, R., & Balcombe, K. (2011). The determinants of technology adoption by UK farmers using Bayesian model averaging: The cases of organic production and computer usage. Australian Journal of Agricultural and Resource Economics,55(4), 579–598.

    Article  Google Scholar 

  95. TÜV Rheinland. (2017). Aktuelle Breitbandversorgung in den Bundesländern: Erhebung des TÜV Rheinland im Auftrag des Bundesministeriums für Verkehr und digitale Struktur (BMVI). Data provided by Dirk Andritzki (TÜV Rheinland).

  96. Vellidis, G., Liakos, V., Andreis, J. H., Perry, C. D., Porter, W. M., Barnes, E. M., et al. (2016). Development and assessment of a smartphone application for irrigation scheduling in cotton. Computers and Electronics in Agriculture,127, 249–259.

    Article  Google Scholar 

  97. Venkatesh, V., Morris, M. G., & Ackerman, P. L. (2000). A longitudinal field investigation of gender differences in individual technology adoption decision-making processes. Organizational Behavior and Human Decision Processes,83(1), 33–60.

    CAS  PubMed  Article  PubMed Central  Google Scholar 

  98. Verbeek, M. (2008). A guide to modern econometrics. Chichester: Wiley.

    Google Scholar 

  99. Walton, J. C., Lambert, D. M., Roberts, R. K., Larson, J. A., English, B., Larkin, S. L., et al. (2008). Adoption and abandonment of precision soil sampling in cotton production. Journal of Agricultural and Resource Economics,33(3), 428–448.

    Google Scholar 

  100. Wang, D., Xiang, Z., & Fesenmaier, D. R. (2014). Adapting to the mobile world: A model of smartphone use. Annals of Tourism Research,48, 11–26.

    CAS  Article  Google Scholar 

  101. Whitacre, B. E. (2008). Factors influencing the temporal diffusion of broadband adoption: Evidence from Oklahoma. The Annals of Regional Science,42(3), 661–679.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marius Michels.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Table 4.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Michels, M., Fecke, W., Feil, J. et al. Smartphone adoption and use in agriculture: empirical evidence from Germany. Precision Agric 21, 403–425 (2020). https://doi.org/10.1007/s11119-019-09675-5

Download citation

Keywords

  • Technology adoption
  • Smartphone adoption
  • German farmers
  • Digitalisation
  • Innovation