Skip to main content

A systematic literature review of the factors affecting the precision agriculture adoption process

Abstract

For agricultural industries to capture many environmental and economic benefits that have been demonstrated for precision agriculture (PA) technologies, an understanding of the factors affecting adoption of these technologies is required to adequately inform the development of PA approaches and the programs used to promote their use. A systematic review of the literature was undertaken to explore the processes of adoption of PA technologies, using an innovation diffusion framework to analyse the complex interactions between different factors in the adoption process. A total of 34 relevant publications were extracted from Scopus database following a systematic search and analysis process. PA technologies adoption research has predominantly been undertaken in the United States and Germany, with industrial crops receiving the most research attention. Relative advantage and motivation were the most frequently mentioned factors affecting PA technologies adoption. However, very few studies have examined multiple components of the complex adoption process, and most were narrowly focussed on assessing the impact of a single aspect. The conclusions drawn from the review are that many of the determinants of innovation diffusion that have been examined in other industry contexts were absent in the PA technologies adoption literature, and that the complexity and multidimensional nature of the adoption process was very poorly represented.

This is a preview of subscription content, access via your institution.

References

  1. Adekunle, I. O. (2013). Precision agriculture: Applicability and opportunities for Nigerian agriculture. Middle East Journal of Scientific Research, 13(9), 1230–1237.

    Google Scholar 

  2. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211.

    Article  Google Scholar 

  3. Anselmi, A. A., Bredemeier, C., Federizzi, L. C., & Molin, J. P. (2014). Factors related to adoption of precision agriculture technologies in southern Brazil, Retrieved March 12, 2018, from http://www.agriculturadeprecisao.org.br/upimg/publicacoes/pub_factors-related-to-adoption-of-precision-agriculture–technologies-in-southern-brazil–anselmi-a-a-c-bredemeier-federizzi-lc-molin-jp-icpa-2014-24-02-2016.pdf

  4. Aubert, B. A., Schroeder, A., & Grimaudo, J. (2012). IT as enabler of sustainable farming: an empirical analysis of farmers’ adoption decision of precision agriculture technology. Decision Support Systems, 54(1), 510–520.

    Article  Google Scholar 

  5. Bagheri, N., & Bordbar, M. (2014). Solutions for fast development of precision agriculture in Iran. Agricultural Engineering International: CIGR Journal, 16(3), 119–123.

    Google Scholar 

  6. Batte, M. T., & Arnholt, M. W. (2003). Precision farming adoption and use in Ohio: Case studies of six leading-edge adopters. Computers and Electronics in Agriculture, 38(2), 125–139.

    Article  Google Scholar 

  7. Binswanger, H. (1986). Agricultural mechanization: A comparative historical perspective. Research Observer, 1, 27–56.

    Article  Google Scholar 

  8. Boyer, C. N., Lambert, D. M., Velandia, M., English, B. C., Roberts, R. K., Larson, J. A., et al. (2016). Cotton producer awareness and participation in cost-sharing programs for precision nutrient-management technology. Journal of Agricultural and Resource Economics, 41(1), 81–96.

    Google Scholar 

  9. Busse, M., Doernberg, A., Siebert, R., Kuntosch, A., Schwerdtner, W., König, B., et al. (2014). Innovation mechanisms in German precision farming. Precision Agriculture, 15(4), 403–426.

    Article  Google Scholar 

  10. Daberkow, S. G., & McBride, W. D. (2003). Farm and operator characteristics affecting the awareness and adoption of precision agriculture technologies in the US. Precision Agriculture, 4(2), 163–177.

    Article  Google Scholar 

  11. Davis, F. D., Bogozzi, R. P., & Warshaw, P. R. (1989). User acceptance of computer technology: A comparison of two theoretical models. Management Science, 35, 982–1003.

    Article  Google Scholar 

  12. Erickson, B., Lowenberg-DeBoer, J., & Bradford, J. (2017). 2017 precision agriculture dealership survey, Retrieved June 3, 2018, from http://agribusiness.purdue.edu/files/file/croplife-purdue-2017-precision-dealer-survey-report.pdf.

  13. Fernandez-Cornejo, J., Jans, S., & Smith, M. (1998). Issues in the economics of pesticide use in agriculture: A review of the empirical evidence. Review of agricultural economics, 20, 462–488.

    Google Scholar 

  14. Greenhalgh, T., Robert, G., Macfarlane, F., Bate, P., & Kyriakidou, O. (2004). Diffusion of innovations in service organizations: Systematic review and recommendations. Milbank Quarterly, 82(4), 581–629.

    Article  Google Scholar 

  15. International Society of Precision Agriculture. (2018). Association seeks definitive definition of “precision agriculture”What’s your vote? Retrieved December 17, 2018, from https://www.precisionag.com/events/association-seeks-definitive-definition-of-precision-agriculture-whats-your-vote/

  16. Knickel, K., Brunori, G., Rand, S., & Proost, J. (2009). Towards a better conceptual framework for innovation processes in agriculture and rural development: From linear models to systemic approaches. Journal of Agricultural Education and Extension, 15(2), 131–146.

    Article  Google Scholar 

  17. Koschatzky, K., Baier, E., Kroll, H., & Stahlecker, T. (2009). The spatial multidimensionality of sectoral innovation: The case of information and communication technologies, Retrieved October 22, 2017, from https://www.econstor.eu/bitstream/10419/29327/1/611509202.pdf.

  18. Kountios, G., Ragkos, A., Bournaris, T., Papadavid, G., & Michailidis, A. (2018). Educational needs and perceptions of the sustainability of precision agriculture: Survey evidence from Greece. Precision Agriculture, 19(3), 537–554.

    Article  Google Scholar 

  19. Kutter, T., Tiemann, S., Siebert, R., & Fountas, S. (2011). The role of communication and co-operation in the adoption of precision farming. Precision Agriculture, 12(1), 2–17.

    Article  Google Scholar 

  20. Lambert, D. M., Paudel, K. P., & Larson, J. A. (2015). Bundled adoption of precision agriculture technologies by cotton producers. Journal of Agricultural and Resource Economics, 40(2), 325–345.

    Google Scholar 

  21. Malerba, F. (2002). Sectoral systems of innovation and production. Research Policy, 31(2), 247–264.

    Article  Google Scholar 

  22. Markley, J., & Hughes, J. (2014). Understanding the barriers to the implementation of precision agriculture in the central region. International Sugar Journal, 116(1384), 278–285.

    Google Scholar 

  23. Paustian, M., & Theuvsen, L. (2017). Adoption of precision agriculture technologies by German crop farmers. Precision Agriculture, 18(5), 701–716.

    Article  Google Scholar 

  24. Paxton, K. W., Mishra, A. K., Chintawar, S., Roberts, R. K., Larson, J. A., English, B. C., et al. (2011). Intensity of precision agriculture technology adoption by cotton producers. Agricultural and Resource Economics Review, 40(1), 133–144.

    Article  Google Scholar 

  25. Pierpaoli, E., Carli, G., Pignatti, E., & Canavari, M. (2013). Drivers of precision agriculture technologies adoption: A literature review. Procedia Technology, 8, 61–69.

    Article  Google Scholar 

  26. Robertson, M. J., Llewellyn, R. S., Mandel, R., Lawes, R., Bramley, R. G. V., Swift, L., et al. (2012). Adoption of variable rate fertiliser application in the Australian grains industry: Status, issues and prospects. Precision Agriculture, 13(2), 181–199.

    Article  Google Scholar 

  27. Rogers, E. M. (1983). Diffusion of Innovations (3rd ed.). New York: Free Press.

    Google Scholar 

  28. Rogers, E. M. (2003). Diffusion of innovations (5th ed.). New York: Free Press.

    Google Scholar 

  29. Stoate, C., Boatman, N. D., Borralho, R. J., Carvalho, C. R., De Snoo, G. R., & Eden, P. (2001). Ecological impacts of arable intensification in Europe. Journal of Environmental Management, 63(4), 337–365.

    CAS  Article  Google Scholar 

  30. Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implication. Precision Agriculture, 13, 713–730.

    Article  Google Scholar 

  31. Umbers, A., Watson, P., & Watson, D. (2015). Farm Practices Survey Report 2015, Retrieved June 3, 2018, from https://grdc.com.au/__data/assets/pdf_file/0025/230749/grdc-farm-practices-survey-2015.pdf.pdf.

  32. Wejnert, B. (2002). Integrating models of diffusion of innovations: A conceptual framework. Annual Review of Sociology, 28, 297–326.

    Article  Google Scholar 

  33. Wright, R. W., Brand, R. A., Dunn, W., & Spindler, K. P. (2007). How to write a systematic review. Clinical Orthopaedics and Related Research, 455, 23–29.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Hari Sharan Pathak.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: details of selected publications

Appendix: details of selected publications

Year Authors Publication Country PA technologies Industry
2018 Kountios, G.
Ragkos, A.
Bournaris, T.
Papadavid, G.
Michailidis, A.
Precision Agriculture, vol. 19: 537–554 Greece Variable rate technology
Remote sensing
Geographical information systems
Multiple (Cotton, cereal, vegetables, arboriculture)
2018 Tamirat, T. W.
Pedersen, S. M.
Lind, K. M.
Acta Agriculturae Scandinavica, Section B—Soil & Plant Science, vol. 68: 349–357 Denmark
Germany
Auto guidance Not mentioned
2017 Paustian, M.
Theuvsen, L.
Precision agriculture, vol. 18: 701–716 Germany Not mentioned Multiple (Wheat, barley, rye, oilseed, corn, feeding crops)
2016 Keskin, M.
Sekerli, Y. E.
Agronomy Research, vol. 14: 1307–1320 Turkey Geographic information systems
Remote sensing
Multiple (Grain, vegetable, industrial crop, fruit)
2016 Boyer, C. N.
Lambert, D. M.
Velandia, M.
English, B. C.
Roberts, R. K.
Larson, J. A.
Larkin, S. L.
Paudel, K. P.
Reeves, J. M
Journal of Agricultural and Resource Economics, vol. 41: 81–96 US Variable rate technology
Geo-referenced precision soil sampling
Cotton
2016 Schimmelpfennig, D.
Ebel, R.
Journal of Agricultural and Resource Economics, vol. 41: 97–115 US Yield monitor
Yield map
Variable rate technology
Grain
2015 Lambert, D. M.
Paudel, K. P.
Larson, J. A.
Journal of Agricultural and Resource Economics, vol. 40: 325–345 US Bundled of Yield monitors and grid soil sampling
Bundle of aerial, satellite imagery, handheld devices with GPS and soil survey maps
Cotton
2014 Lambert, D. M.
English, B. C.
Harper, D. C.
Larkin, S. L.
Larson, J. A.
Mooney, D. F.
Roberts, R. K.
Velandia, M.
Reeves, J. M.
Journal of Agricultural and Resource Economics, vol. 39: 106–123 US Geo-referenced soil testing Cotton
2014 Bagheri, N.
Bordbar, M.
Agricultural Engineering International: CIGR Journal, vol. 16: 119–123 Iran Not mentioned Not mentioned
2014 Lencses, E. Takacs, I. Takacs-Gyorgy, K. Sustainability, vol. 6: 8452–8465 Hungary Auto-guidance Not mentioned
2014 Busse, M.
Doernberg, A.
Siebert, R.
Kuntosch, A.
Schwerdtner, W.
Konig, B.
Bokelmann, W.
Precision Agriculture, vol. 15: 403–426 Germany Yield mapping
GPS based soil sampling
Not mentioned
2014 Watcharaanantapong, P.
Roberts, R. K.
Lambert, D. M.
Larson, J. A.
Velandia, M.
English, B. C.
Rejesus, R. M.
Wang, C.
Precision Agriculture, vol. 15: 427–446 US Remote sensing
Yield monitor
Grid soil sampling
Cotton
2014 Markley, J.
Hughes, J.
International Sugar Journal, vol. 116: 278–285 Australia Variable rate technology
Satellite imagery
Sugarcane
2013 Adekunle, I. O. Middle East Journal of Scientific Research, vol. 13: 1230–1237 Nigeria Yield mapping
Remote sensing
Multiple (Grain, vegetable, industrial crop, fruit, grape, oleaginous)
2012 Robertson, M. J.
Llewellyn, R. S.
Mandel, R.
Lawes, R.
Bramley, R. G. V.
Swift, L.
Metz, N.
O’Callaghan, C.
Precision Agriculture, vol. 13: 181–199 Australia Variable rate technology
Yield mapping
Grain
2012 D’Antoni, J. M.
Mishra, A. K.
Joo, H.
Computers and Electronics in Agriculture, vol. 87: 121–128 US Autosteer Cotton
2012 Aubert, B. A. Schroeder, A. Grimaudo, J. Decision Support Systems, vol. 54: 510–520 Canada Yield monitor
Geographic information systems
Remote sensing
Multiple (Cereal and oleaginous)
2011 Silva, C. B.
De Moraes, M. A. F. D.
Molin, J. P.
Precision Agriculture, vol. 12: 67–81 Brazil Satellite imagery
Aerial photography
Auto-guidance
Sugarcane
2011 Kutter, T. Tiemann, S. Siebert, R. Fountas, S. Precision Agriculture, vol. 12: 2–17 Multiple locations (Czech Republic, Denmark and Greece) Yield mapping
Auto-guidance
Soil sampling
Grain
2011 Paxton, K. W.
Mishra, A. K.
Chintawar, S.
Roberts, R. K.
Larson, J. A.
English, B. C.
Lambert, D. M.
Marra, M. C.
Larkin, S. L.
Reeves, J. M.
Martin, S. W.
Agricultural and Resource Economics Review, vol. 40: 133–144 US Not mentioned Cotton
2011 Lawson, L. G. Pedersen, S. M. Sorensen, C. G. Pesonen, L. Fountas, S. Werner, A. Oudshoorn, F. W. Herold, L. Chatzinikos, T. Kirketerp, I. M. Blackmore, S. Computers and Electronics in Agriculture, vol. 77: 7–20 Multiple locations (Denmark, Finland, Germany and Greece) Auto-guidance
Grid soil sampling
Multiple (Vegetable, industrial crop, cereal, livestock)
2010 Walton, J. C.
Roberts, R. K. Lambert, D. M.
Larson, J. A.
English, B. C.
Larkin, S. L.
Martin, S. W.
Marra, M. C.
Paxton, K. W.
Reeves, J. M.
Precision Agriculture, vol. 11: 135–147 US Grid soil sampling Variable rate technology Cotton
2009 Reichardt, M.
Jurgens, C.
Precision Agriculture, vol. 10: 73–94 Germany GPS based soil sampling
Yield mapping
Variable rate technology
Not mentioned
2009 Reichardt, M.
Jurgens, C.
Kloble, U.
Hüter, J.
Moser, K.
Precision Agriculture, vol. 10: 525–545 Germany GPS based soil sampling
Yield mapping
Not mentioned
2008 Torbett, J. C.
Roberts, R. K.
Larson, J. A.
English, B. C.
Computers and Electronics in Agriculture, vol. 64: 140–148 US Grid soil sampling
Yield monitor
Remote sensing
Cotton
2008 Larson, J. A.
Roberts, R. K.
English, B. C.
Larkin, S. L.,
Marra, M. C.
Martin, S. W.
Paxton, K. W.
Reeves, J. M.
Precision Agriculture, vol. 9: 195–208 US Remote sensing
Variable rate technology
Cotton
2008 Isgin, T.
Bilgic, A.
Forster, D. L.
Batte, M. T.
Computers and Electronics in Agriculture, vol. 62: 231–242 US Yield monitor
Variable rate technology
Grid soil sampling
Not mentioned
2008 Walton, J. C.
Lambert, D. M.
Roberts, R. K.
Larson, J. A.
English, B. C.
Larkin, S. L.
Martin, S. W.
Marra, M. C.
Paxton, K. W.
Reeves, J. M.
Journal of Agricultural and Resource Economics, vol. 33: 428–448 US Variable rate technology
Soil sampling
Cotton
2007 Jochinke, D. C.
Noonon, B. J.
Wachsmann, N. G.
Norton, R. M.
Field Crops Research, vol. 104: 68–76 Australia Yield monitor
Autosteer
Aerial photography
Not mentioned
2007 Nganje, W. E.
Friedrichsen, M. S.
Gustafson, C. R.
McKee, G.
Agricultural finance review, vol. 67: 295–310 US Variable rate technology Multiple (Grain, vegetable, oleaginous)
2005 Adrin, A. M. Norwood, S. H. Mask, P. L. Computers and Electronics in Agriculture, vol. 48: 256–271 US Yield monitor
Remote sensing
Grid soil sampling
Not mentioned
2004 Pedersen, S. M.
Fountas, S.
Blackmore, B. S.
Gylling, M.
Pedersen, J. L.
Acta Agriculturae Scandinavica Section B: Soil and Plant Science, vol. 54: 2–8 Denmark Yield mapping
Variable rate technology
Multiple (Grain and oleaginous)
2003 Daberkow, S. G.
McBride, W. D.
Precision Agriculture, vol. 4: 163–177 US Not mentioned Grain and oilseed
2003 Batte, M. T.
Arnholt, M. W.
Computers and Electronics in Agriculture, vol. 38: 125–139 US Yield monitor
Variable rate technology
Grid soil sampling
Grain

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pathak, H.S., Brown, P. & Best, T. A systematic literature review of the factors affecting the precision agriculture adoption process. Precision Agric 20, 1292–1316 (2019). https://doi.org/10.1007/s11119-019-09653-x

Download citation

Keywords

  • Precision agriculture
  • Technology adoption
  • Adoption process
  • Diffusion of innovation
  • Factors
  • Extension