Use of real-time extend GNSS for planting and inverting peanuts


Among the main techniques employed in precision agriculture, yield mapping and automatic guidance of agricultural machines are the best-known to farmers. The objective of this study was to evaluate, using statistical process control tools, the quality of automatic guidance using satellite signals, to reduce positioning errors and losses in peanut digging. The treatments consisted of the use of manual (operator guidance) and automatic (autopilot) guidance with RTX satellite signals in sowing and digging operations. The quality of the operation was evaluated after collection of 30 points spaced at 100 m for each quality indicator, which are the losses and the errors of alignment of the mechanised sets in sowing and digging operations. From the perspective of statistical control, manual guidance was shown to be compromised for the quality indicators of digging losses. Despite the instability in the sowing and digging operations, the use of automatic guidance proved to be accurate. The use of automatic guidance increases the precision and reduces overlaps (< 38 mm, as stipulated by the supplier) for sowing and digging. The manual sowing mean error between overlaps was stable; however, it did not remain constant over time.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Almeida, M. S., & Dal Poz, W. R. (2016). Precise point positioning and relative positioning with GNSS: What most accurate currently? Bulletin of Geodetic Science Curitiba, 22(1), 175–195.

    Google Scholar 

  2. Baio, F. R. R., & Moratelli, R. F. (2011). Auto guidance accuracy evaluation and contrast of the operational field capacity on the mechanized plantation system of sugar cane. Journal of the Brazilian Association of Agricultural Engineering, 31(2), 367–375.

    Google Scholar 

  3. Bragachini, M. E., & Peiretti, J. M. (2008). En la eficiencia de cosecha de maní (On the efficiency of the peanut harvest). Gacetilla de Prensa: 09/2008 março 2008. Retrieved September 3, 2018, from (in Spanish).

  4. Cappellli, N. L., Umezu, C. K., Silveira, A. C., & Garcia, A. P. (2006). Comparative performance among GPS receivers. Journal of the Brazilian Society of Agroinformatics, 8(1), 63–77.

    Google Scholar 

  5. Cavichioli, F. A., Zerbato, C., Bertonha, R. S., Silva, R. P., & Silva, V. F. A. (2014). Pods losses during the mechanical harvesting of peanuts. Journal of Agrarian Science, 42(3), 211–215.

    Google Scholar 

  6. CONAB. (2017). Monitoring of the Brazilian grain harvest, v.4 Harvest 2016/17-12° data collection, Brasília, pp. 1–158 September 2017. Retrieved September 3, 2018, from (in Portuguese).

  7. Easterly, D. R., Adamchuk, V. I., Kocher, M. F., & Hoy, R. M. (2010). Using a vision sensor system for performance testing of satellite-based tractor auto-guidance. Computers and Electronics in Agriculture, 72(2), 107–118.

    Article  Google Scholar 

  8. EMBRAPA - Brazilian Agricultural Research Corporation. (2013). Brazilian system of soil classification (3rd ed., p. 353). Brasília: Embrapa.

    Google Scholar 

  9. Holpp, M., Kroulik, M., Kviz, Z., Anken, T., Sauter, M., & Hensel, O. (2013). Large-scale field evaluation of driving performance and ergonomic effects of satellite-based guidance systems. Biosystems Engineering, 116(2), 190–197.

    Article  Google Scholar 

  10. Ince, A. & Guzel, E. (2003). Effects of gynophore breaking resistance on losses in mechanized peanut harvesting. In G. Quick (Ed.) International conference on crop harvesting and processing, ASAE Publication Number 701P1103e. St Joseph, MI, USA: ASAE.

  11. Keller, J. (2005). Auto-Guidance-System-Effiziente Flächenbearbeitung, Diesel verbrauchsoptimierung, Steigerung der Wirtschaftlichkeit (Efficient surface treatment, diesel consumption optimization, increase in economic efficiency). In: Max-Eyth-Gesellschaft Fur Agrartechnik (Ed.) VDI-Berichte 1868-Landtechnik für Profis (pp. 75–80). Düsseldorf, Germany: VDI Verlag GmbH.

  12. Koppen, W. (1948). Climatologia: Con um estudo de los climas de la Tierra. (Climatology: With a study of the climates of the Earth) México: Fondo de Cultura Economico.

  13. Kroulík, M., Kvíz, Z., Kumhála, F., Hula, J., & Loch, T. (2011). Procedures of soil farming allowing reduction of compaction. Precision Agriculture, 12(3), 317–333.

    Article  Google Scholar 

  14. Leidner, J. (2012). Precision farming payoff in peanuts. Southeastern Peanut Farmer, 50(5), 10–12.

    Google Scholar 

  15. Lipinski, A. J., Markowski, P., Lipinski, S., & Pyra, Paweł. (2016). Precision of tractor operations with soil cultivation implements using manual and automatic steering modes. Biosystems Engineering, 14, 22–28.

    Article  Google Scholar 

  16. Montgomery, D. C. (2009). Design and analysis of experiments (6th ed., pp. 179–268). Hoboken, NJ, USA: Wiley.

    Google Scholar 

  17. Oksanen, T. (2015). Accuracy and performance experiences of four wheel steered autonomous agricultural tractor in sowing operation. In L. Mejias, P. Corke, & J. Roberts (Eds.), Field and service robotics. Springer tracts in advanced robotics (Vol. 105). Switzerland: Springer.

    Google Scholar 

  18. Oliveira, T. C., & Molin, J. P. (2011). Use of autopilots on citrus orchards establishment. Journal of the Brazilian Association of Agricultural Engineering, 31(2), 334–342.

    Google Scholar 

  19. Ortiz, B. V., Balkcom, K. B., Duzy, L., Van Santen, E., & Hartzog, D. L. (2013). Evaluation of agronomic and economic benefits of using RTK-GPS-based auto-steer guidance systems for peanut digging operations. Precision Agriculture, 14, 357–375.

    Article  Google Scholar 

  20. Paixão, C. S. S., Santos, A. F., Voltarelli, M. A., Silva, R. P., & Carneiro, F. M. (2017). Times of efficiency and quality of soybean crop mechanical operation in geometry functions of plots. Journal of the Brazilian Association of Agricultural Engineering, 37(1), 106–115.

    Article  Google Scholar 

  21. Perez-Ruiz, M., & Upadhyaya, S. K. (2012). GNSS in precision agricultural operations. In F. B. Elbahhar & A. Rivenq (Eds.), New approach of indoor and outdoor localization systems (pp. 1–24). InTech: London, United Kingdom.

    Google Scholar 

  22. Rizos, C., Janssen, V., Robert, C., & Grinter, T. (2012). PPP versus DGNSS. Geomatic. World, 20, 18–20.

    Google Scholar 

  23. Roberson, G. T. (2009). Planting, harvesting, and curing peanuts. In: D. L. Jordan, R. L. Brandenburg, A. B. Brown, S. G. Bullen, G. T. Roberson, B. Shew & J. F. Spears (Eds.) Peanut information (pp. 131–148). North Carolina Coop. Ext. Series AG-331. Raleigh, NC, USA.

  24. Roberson, G. T., & Jordan, D. L. (2014). RTK-GPS and automatic steering for peanut digging. Applied Engineering in Agriculture, 30(3), 405–409.

    Google Scholar 

  25. Rocha, R. S. M., Jerez, G. O., Brassarote, G. O. N., & Monico, J. F. G. (2017). Assessment of the ionospheric scintillation and different data time intervals effect on the precise point positioning in its on-line versions. Revista Brasileira de Geomática, 5(2), 251–276.

    Article  Google Scholar 

  26. Samohyl, R. W. (2009) Statistical quality control (1st ed.). São Paulo, Brazil: Elsevier: Elsevier Campus. v. 1. ISBN 978-85-352-3220-2.

  27. Santos, A. F., Kazama, E. H., Ormond, A. T. S., Tavares, T. O., & Silva, R. P. (2016a). Quality of mechanized peanut digging in function of the auto guidance. African Journal of Agricultural Research, 11(48), 4894–4901.

    Article  Google Scholar 

  28. Santos, A. F., Silva, R. P., Corrêa, L. N., Borba, M. A. P., & Girio, L. A. S. (2016b) Accuracy and precision monitoring through statistical process control. In: Brazilian Congress of Precision Agriculture-ConBAP, 2016, Goiânia. Anais Goiânia: SBEA, CD-Rom.

  29. Santos, E. P., Silva, R. P., Bertonha, R. S., Noronha, R. H. F., & Zerbato, C. (2013). Productivity and losses in the peanut on five different harvesting dates. Revista Ciência Agronômica, 44(4), 695–702.

    Article  CAS  Google Scholar 

  30. Seeber, G. (2003). Satellite geodesy: Foundations, methods and applications (p. 586). Berlin, New York: Walter de Gruyter.

    Google Scholar 

  31. Silva, E. L., & Gervásio, E. S. (1999). The use of TDR for moisture determination in different layers of a dystrophic dusky red latossol. Revista Brasileira Engenharia Agrícola Ambiental, 3(3), 417–420.

    Article  Google Scholar 

  32. Tavares, T. O., Damasceno, A. F., Voltarelli, M. A., Silva, R. P., & Furlani, C. E. A. (2017). Effective power and hourly fuel consumption demanded by set tractor-coffee harvester in function of adequacy tractor ballasting. Journal of the Brazilian Association of Agricultural Engineering, 37(4), 699–708.

    Article  Google Scholar 

  33. Tey, Y. S., & Brindal, M. (2012). Factors influencing the adoption of precision agricultural technologies: A review for policy implications. Precision Agriculture, 13, 713–730.

    Article  Google Scholar 

  34. Tiwari, R., Skone, S., Tiwari, S., & Strangeways H. J. (2011). 3WBMod assisted PLL GPS software receiver for mitigating scintillation affect in high latitude region. IEEE. Retrieved September 26, 2018 from,

  35. TRIMBLE RTX. (2017). Retrieved September 03, 2018 from

  36. USDA. (2018). United States Department of Agriculture. Peanut Area, Yield, and Production. Retrieved June 10, 2018 from

  37. Vaccaro, G. L. R., Martins, J. C., & Menezes, T. M. (2011). Statistical analysis of the quality of tension levels in electrical energy distribution systems. Production, 21, 539–552.

    Article  Google Scholar 

  38. Vellidis, G., Ortiz, B., Beasley, J., Hill, R., Henry, H., & Brannen, H. (2014). Reducing digging losses by using automated steering to plant and invert peanuts. Agronomy, 4, 337–348.

    Article  Google Scholar 

  39. Voltarelli, M. A., Silva, R. P., Cassia, M. T., Daloia, J. G. M., & Paixão, C. S. S. (2017). Quality of base cutting in sugarcane using knives of different angles and coatings. Revista Ciência Agronômica, 48(3), 438–447.

    Article  Google Scholar 

  40. Williams, E. J., & Drexler, J. S. (1981). A non-destructive method for determining peanut pod maturity. Peanut Science, 8(2), 134–141.

    Article  Google Scholar 

  41. Zerbato, C., Furlani, C. E. A., Ormond, A. T. S., Gírio, L. A. S., Carneiro, F. M., & Silva, R. P. (2017a). Statistical process control applied to mechanized peanut sowing as a function of soil texture. PLoS ONE, 12(7), e0180399.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Zerbato, C., Furlani, C. E. A., Silva, R. P., Voltarelli, M. A., & Santos, A. F. (2017b). Statistical control of processes applied for peanut mechanical digging in soil textural classes. Journal of the Brazilian Association of Agricultural Engineering, 37(2), 315–322.

    Google Scholar 

Download references


This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information



Corresponding author

Correspondence to Adão Felipe dos Santos.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Electronic supplementary material 1 (PDF 84 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

dos Santos, A.F., da Silva, R.P., Zerbato, C. et al. Use of real-time extend GNSS for planting and inverting peanuts. Precision Agric 20, 840–856 (2019).

Download citation


  • Global navigation satellite system (GNSS)
  • Precision point positioning
  • Mechanized harvest
  • Peanut digging