Spatial variability in commercial orange groves. Part 1: canopy volume and height

Abstract

Characterizing crop spatial variability is crucial for estimating the opportunities for site-specific management practices. In the context of tree crops, ranging sensor technology has been developed to assess tree canopy geometry and control real-time variable rate application of plant protection products and fertilizers. The objective of this study was to characterize the variability of canopy geometry attributes in commercial orange groves in Brazil and therefore estimate the potential impact of sensor-based site-specific management. Using a mobile terrestrial laser scanner, canopy volume and canopy height were measured in 0.25 m length transversal sections along the rows across five large scale commercial orange groves in São Paulo, Brazil. The coefficient of variation of canopy volume ranged from 30 to 40%. Canopy height was less variable, but closely related to canopy volume. Histograms of canopy volume and height were usually negatively skewed indicating regions of the groves with smaller plants and punctual plant resets. In scenarios where input application rates followed canopy volume variability, input savings were around 40% compared to constant rates based on the maximum canopy volume. Maps of canopy geometry derived from mobile terrestrial laser scanning revealed significant canopy spatial variability, suggesting that the groves would benefit from strategies based on management zones and other forms of site-specific management.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Akaike, H. (1974). A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716–723.

    Article  Google Scholar 

  2. Byers, R. E. (1987). Tree-row-volume spraying rate calculator for apples. HortScience, 22, 506–507.

    Google Scholar 

  3. Byers, R. E., Lyons, C. G., Yoder, K. S., Horsburgh, R. L., Barden, J. A., & Donohue, S. J. (1984). Effect of apple tree size and canopy density on spray chemical deposit. HortScience, 19, 93–94.

    Google Scholar 

  4. CloudCompare [GPL software] v2.6.1. (2018). Retrieved June 28, 2018 from, http://www.cloudcompare.org.

  5. Colaço, A. F., & Molin, J. P. (2017). Variable rate fertilization in citrus: A long term study. Precision Agriculture, 18, 169–191. https://doi.org/10.1007/s11119-016-9454-9.

    Article  Google Scholar 

  6. Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2018). Application of light detection and ranging and ultrasonic sensors to high throughput phenotyping and precision horticulture: Current status and challenges. Horticulture Research, 5(1), 35–46. https://doi.org/10.1038/s41438-018-0043-0.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Colaço, A. F., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (in press). Spatial variability in commercial orange groves. Part 2: relating canopy geometry to soil attributes and historical yield. Precision Agriculture.

  8. Colaço, A. F., Rosa, H. J. A., & Molin, J. P. (2014). A model to analyze as-applied reports from variable rate applications. Precision Agriculture, 15, 304–320. https://doi.org/10.1007/s11119-014-9358-5.

    Article  Google Scholar 

  9. Colaço, A. F., Trevisan, R. G., Molin, J. P., Rosell-Polo, J. R., & Escolà, A. (2017). A method to obtain orange crop geometry information using a mobile terrestrial laser scanner and 3D modeling. Remote Sensing, 9, 763. https://doi.org/10.3390/rs9080763.

    Article  Google Scholar 

  10. Escolà, A., Martínez-Casasnovas, J. A., Rufat, J., Arnó, J., Arbonés, A., Sebé, F., et al. (2017). Mobile terrestrial laser scanner applications in precision fruticulture/horticulture and tools to extract information from canopy point clouds. Precision Agriculture, 18, 111–132. https://doi.org/10.1007/s11119-016-9474-5.

    Article  Google Scholar 

  11. FAO. (2018). Food and Agriculture Organization, Faostat. Retrieved June 28, 2018, from http://faostat.fao.org/.

  12. Farias, P. R. S., Nociti, L. A. S., Barbosa, J. C., & Perecin, D. (2003). Agricultura de precisão: Mapeamento da produtividade em pomares cítricos usando geoestatística (Precision Agriculture: Mapping of yield in citrus groves using geostatistics). Revista Brasileira de Fruticultura, 25(2), 235–241.

    Article  Google Scholar 

  13. Fisher, P. D., Abuzar, M., Rab, M. A., Best, F., & Chandra, S. (2009). Advances in precision agriculture in south-eastern Australia. I. A regression methodology to simulate spatial variation in cereal yields using farmers’ historical paddock yields and normalised difference vegetation index. Crop Pasture Science, 60, 844. https://doi.org/10.1071/CP08347.

    Article  Google Scholar 

  14. Giles, D. K., Delwiche, M. J., & Dodd, R. B. (1987). Control of orchard spraying based on electronic sensing of target characteristics. Transactions of the ASAE, 30, 1624–1630. https://doi.org/10.13031/2013.30614.

    Article  Google Scholar 

  15. Giles, D. K., Delwiche, M. J., & Dodd, R. B. (1989). Sprayer control by sensing orchard crop characteristics: Orchard architecture and spray liquid savings. Journal of Agricultural Engineering Research, 43, 271–289. https://doi.org/10.1016/S0021-8634(89)80024-1.

    Article  Google Scholar 

  16. Leão, M. G. A., Marques, J., Jr., de Souza, Z. M., & Pereira, G. T. (2010). Variabilidade espacial da textura de um latossolo sob cultivo de citros (Spatial variability of texture of a Latosol under cultivation of citrus). Ciência e Agrotecnologia, 34(1), 121–131.

    Article  Google Scholar 

  17. Mann, K. K., Schumann, A. W., & Obreza, T. A. (2011). Delineating productivity zones in a citrus grove using citrus production, tree growth and temporally stable soil data. Precision Agriculture, 12, 457–472. https://doi.org/10.1007/s11119-010-9189-y.

    Article  Google Scholar 

  18. Méndez, V., Rosell-Polo, J. R., Pascual, M., & Escolà, A. (2016). Multi-tree woody structure reconstruction from mobile terrestrial laser scanner point clouds based on a dual neighbourhood connectivity graph algorithm. Biosystems Engineering, 148, 34–47. https://doi.org/10.1016/j.biosystemseng.2016.04.013.

    Article  Google Scholar 

  19. Minasny, B., McBratney, A. B.,Whelan, B. M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture, McMillan Building A05, the University of Sydney, NSW. Retrieved June 28, 2018 from http://sydney.edu.au/agriculture/pal/software/vesper.shtml.

  20. Molin, J. P., Colaço, A. F., Carlos, E. F., & Mattos, D., Jr. (2012). Yield mapping, soil fertility and tree gaps in an orange orchard. Revista Brasileira de Fruticultura, 34, 1256–1265.

    Article  Google Scholar 

  21. Molin, J. P., & Mascarin, L. S. (2007). Colheita de citros e obtenção de dados para mapeamento da produtividade (Characterization of harvest systems and development of yield mapping for citrus). Engenharia Agrícola, 27, 259–266.

    Article  Google Scholar 

  22. Oliveira, P. C. G., Farias, P. R. S., Lima, H. V., Fernandes, A. R., Oliveira, F. A., & Pita, J. D. (2009). Variabilidade espacial de propriedades químicas do solo e da produtividade de citros na Amazônia Oriental (Spatial variability of soil chemical properties and yield of citrus orchards in eastern Amazonia). Engenharia Agrícola e Ambiental, 13(6), 708–715.

    Article  Google Scholar 

  23. Pringle, M. J., McBratney, A. B., Whelan, B. M., & Taylor, J. A. (2003). A preliminary approach to assessing the opportunity for site-specific crop management in a field, using yield monitor data. Agricultural Systems, 76, 273–292. https://doi.org/10.1016/S0308-521X(02)00005-7.

    Article  Google Scholar 

  24. QGIS v2.10—QGIS Development Team. (2018). QGIS Geographic Information System. Open Source Geospatial Foundation Project. Retrieved June 28, 2018 http://www.qgis.org.

  25. Robertson, M. J., Lyle, G., & Bowden, J. W. (2008). Within-field variability of wheat yield and economic implications for spatially variable nutrient management. Field Crops Research, 105, 211–220. https://doi.org/10.1016/j.fcr.2007.10.005.

    Article  Google Scholar 

  26. Rosell-Polo, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2009). Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agriculture and Forest Meteorology, 149, 1505–1515. https://doi.org/10.1016/j.agrformet.2009.04.008.

    Article  Google Scholar 

  27. Rosell-Polo, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture, 81, 124–141. https://doi.org/10.1016/j.compag.2011.09.007.

    Article  Google Scholar 

  28. Schumann, A. W., Hostler, K. H., Buchanon, S., & Zaman, Q. U. (2006a). Relating citrus canopy size and yield to precision fertilization. Proceedings of Florida State Horticultural Society, 119, 148–154.

    Google Scholar 

  29. Schumann, A. W., Miller, W. M., Zaman, Q. U., Hostler, K. H., Buchanon, S., & Cugati, S. A. (2006b). Variable rate granular fertilization of citrus groves: Spreader performance with single-tree prescription zones. Applied Engineering in Agriculture, 22, 19–24.

    Article  Google Scholar 

  30. Schumann, A. W., & Zaman, Q. U. (2005). Software development for real-time ultrasonic mapping of tree canopy size. Computers and Electronics in Agriculture, 47, 25–40. https://doi.org/10.1016/j.compag.2004.10.002.

    Article  Google Scholar 

  31. Siqueira, D. S., Marques, J., Jr., & Pereira, G. T. (2010). The use of landforms to predict the variability of soil and orange attributes. Geoderma, 155, 55–66.

    Article  Google Scholar 

  32. Solanelles, F., Escolà, A., Planas, S., Rosell-Polo, J. R., Camp, F., & Gràcia, F. (2006). An electronic control system for pesticide application proportional to the canopy width of tree crops. Biosystems Engineering, 95, 473–481. https://doi.org/10.1016/j.biosystemseng.2006.08.004.

    Article  Google Scholar 

  33. Sutton, T. B., & Unrath, C. R. (1984). Evaluation of the Tree-Row-Volume concept with density adjuvants in relation to spray deposits in apple orchards. Plant Disease, 68, 480–484.

    Article  Google Scholar 

  34. Sutton, T. B., & Unrath, C. R. (1988). Evaluation of the Tre-Row-Volume model for full-season pesticide application on apples. Plant Disease, 72, 629–632.

    Article  Google Scholar 

  35. Tagarakis, A. C., Koundouras, S., Fountas, S., & Gemtos, T. (2018). Evaluation of the use of LIDAR laser scanner to map pruning wood in vineyards and its potential for management zones delineation. Precision Agriculture, 19, 334–347. https://doi.org/10.1007/s11119-017-9519-4.

    Article  Google Scholar 

  36. Tisseyre, B., & McBratney, A. B. (2008). A technical opportunity index based on mathematical morphology for site-specific management: An application to viticulture. Precision Agriculture, 9, 101–113. https://doi.org/10.1007/s11119-008-9053-5.

    Article  Google Scholar 

  37. Uribeetxebarria, A., Daniele, E., Escolà, A., Arnó, J., & Martínez-Casasnovas, J. A. (2018). Spatial variability in orchards after land transformation: Consequences for precision agriculture practices. Science of the Total Environment, 635, 343–352. https://doi.org/10.1016/j.scitotenv.2018.04.153.

    Article  CAS  PubMed  Google Scholar 

  38. Whitney, J. D., Miller, W. M., Wheaton, T. A., Salyani, M., & Schueller, J. K. (1999). Precision farming applications in Florida citrus. Applied Engineering in Agriculture, 15, 399–403.

    Article  Google Scholar 

  39. Zaman, Q. U., & Schumann, A. W. (2005). Performance of an ultrasonic tree volume measurement system in commercial citrus groves. Precision Agriculture, 6, 467–480.

    Article  Google Scholar 

  40. Zaman, Q. U., & Schumann, A. W. (2006). Nutrient management zones for citrus based on variation in soil properties and tree performance. Precision Agriculture, 7, 45–63. https://doi.org/10.1007/s11119-005-6789-z.

    Article  Google Scholar 

  41. Zaman, Q. U., Schumann, A. W., & Miller, W. M. (2005). Variable rate nitrogen application in Florida citrus based on ultrasonically-sensed tree size. Applied Engineering in Agriculture, 21, 331–336.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Citrosuco and Jacto companies for supporting this Project, the São Paulo Research Foundation (FAPESP) for providing a scholarship to the first author (Grant: 2013/18853-0) and the Coordination for the Improvement of Higher Education Personnel (CAPES), for funding the first author as an exchange visitor at the University of Lleida (Grant: bex_3751/15-5).

Author information

Affiliations

Authors

Corresponding author

Correspondence to André F. Colaço.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colaço, A.F., Molin, J.P., Rosell-Polo, J.R. et al. Spatial variability in commercial orange groves. Part 1: canopy volume and height. Precision Agric 20, 788–804 (2019). https://doi.org/10.1007/s11119-018-9612-3

Download citation

Keywords

  • Precision horticulture
  • Mobile terrestrial laser scanner
  • LiDAR
  • Variable rate technology
  • Orange groves