Skip to main content
Log in

Variable rate spraying application on cotton using an electronic flow controller

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Vegetation indices (VI) obtained by optical sensors have a positive correlation with various attributes of cotton plant growth. This work is aimed at evaluating the variable rate application of plant growth regulator (PGR) and fruit ripener on zones defined by VI and penological measurements using a sprayer equipped with a relatively low cost electronic flow controller on the height, percentage of open fruits, yield and net income. The work was done in a 92 ha field during crop seasons 2012/2013 and 2013/2014, and in a 202 ha field, during the crop season 2014/2015. Two spray applications were made using variable rate technology (VRT) of the PGR and one fruit ripener, in both harvest seasons, according to three VI classes formed by a previous mapping. The uniformity of the cotton height and opened fruits contribute to a similar yield across zones. Uniform plant height facilitates cotton harvest. The ripener helps to ensure all the cotton is ready to be harvested at the same time. In this trial, use of VRT technique to manage the PGR and fruit ripener application increased net income by US$152.28 ha−1, but this estimate is based on yields that are not statistically significantly different from the control. This research confirms that PGR and fruit ripener can be sufficiently managed with an electronic flow controller to result in more uniform cotton plant height and yields within fields, but it leaves open the question of whether VRT PGR is profitable even with the lower cost electronic flow controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Amaral, L. R., Molin, J. P., Portz, G., Finazzi, F. B., & Cortinove, L. (2015). Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture, 16(1), 15–28.

    Article  Google Scholar 

  • Antuniassi, U. R., Baio, F. H. R., & Sharp, T. C. (2015). Precision Agriculture. (In Portuguese.). In Abrapa (Ed.), Algodão no Cerrado do Brasil (pp. 767–806). 3rd ed. Brasília: Gráfica e Editora Positiva.

  • ASAE (2000). Agricultural machinery management data. St. Joseph, ASAE Standards, 349–359. Retrived March 3, 2017 from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/16/nrcs143_009503.pdf.

  • Baio, F. H. R., & Antuniassi, U. R. (2011). Electronic control systems and path control to field sprayers (In Portuguese). In U. R. Antuniassi & W. Boller (Eds.), Application technology to annual crops (pp. 123–142). Passo Fundo: Aldeia Norte.

    Google Scholar 

  • Baio, F. H. R., Leal, A. J. F., Neves, D. C., Souza, H. B., & Gasparelli, D. L. (2015a). Immediate response: variable rate application in itself is already an expressive technological advance for crops (In Portugese). Cultivar Máquinas, 8(154), 12–18.

    Google Scholar 

  • Baio, F. H. R., Scarpin, I. M., & Silva, E. R. (2015b). Water sensitive paper and alternative photographic in deposition tests of droplets. (In Portuguese, with English abstract). Brazilian Journal of Biosystems Engineering, 9(4), 339–347.

    Google Scholar 

  • Conab (2016) Proposta de Preços Mínimos 2013/2014. Retrived March 3, 2016 from http://www.conab.gov.br/OlalaCMS/uploads/arquivos/13_11_22_15_41_10_pm_verao_13_14.pdf.

  • Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (1998). InfoStat. Retrived December 15, 2015 from http://www.infostat.com.ar.

  • Dodds, D. M., Banks, J. C., Barber, L. T., Boman, R. K., Brown, S. M., Edmisten, K. L., et al. (2010). Beltwide evaluation of commercially available plant growth regulators. Journal of Cotton Science, 3, 119–130.

    Google Scholar 

  • Echer, F. R., Rosolem, C. A., & Werle, R. (2013). Dose estimation of growth regulator to be applied to cotton as a function of its growth. (In Portuguese). Cuiabá/MT: Instituto Mato-Grossense do Algodão, Brasil.

  • Embrapa. (2006). Brazilian soil classification system. (In Portuguese) (2nd ed.). Rio de Janeiro, Brazil: EMBRAPA.

    Google Scholar 

  • Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 5(6), 1039–1042.

    Article  Google Scholar 

  • Ferreira, A. C. B., & Lamas, F. M. (2006). Use of plant growth regulators, CW defoliants, desiccants and fruit ripeners on cotton crop. (In Portuguese), Campina Grande/PB: EMBRAPA (Circular Técnica 95).

  • Freitas, R. S., Tomaz, M. A., Ferreira, L. R., Berger, P. G., Pereira, C. J., & Cecon, P. R. (2006). Growth cotton submitted to trifloxysulfuron-sodium herbicide (In Portuguese). Planta Daninha, 24(1), 123-129.

  • Griffin, T. W., & Lowenberg-DeBoer, J. (2005). Worldwide adoption and profitability of precision agriculture Implications for Brazil. Politica Agrícola, 14(4), 20–37.

    Google Scholar 

  • Gu, S., Evers, J. B., Zhang, L., Mao, L., Vos, J., & Li, Z. (2014). Modelling the structural response of cotton plants to mepiquat chloride and population density. Annals of Botany, 114(4), 877–887.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hunt, D. (2007) Farm power and machinery management. 10th ed. Waveland Press. 376p.

  • Iqbal, J., Read, J. J., & Whisler, F. D. (2013). Using remote sensing and soil physical properties for predicting the spatial distribution of cotton lint yield. Turkish Journal of Field Crops, 18(2), 158–165.

    Google Scholar 

  • Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination—impact of seed rate, variety and growth stage. In 7th European Conference on Precision Agriculture. Proceedings. Wageningen, Netherlands. (CD-ROM).

  • Kay, R., Edwards, W., & Duffy, P. A. (2015). Farm Management. 8th ed. McGraw-Hill Education. 480p.

  • Lamas, F. M., & Ferreira, A. C. B. (2015). Growth regulators, defoliants and fruit ripeners. (In Portuguese.). In ABRAPA (Ed.), Algodão no Cerrado do Brasil (pp. 559-582). 3rd ed. Brasília: Gráfica e Editora Positiva.

  • Lamas, F. M., Ferreira, A. C. B., & Bogiani, J. C. (2013). Points to consider in the growth regulator management in cotton crops. (In Portuguese), Dourados/MS: EMBRAPA (Comunicado Técnico 192).

  • Lowenberg-DeBoer, J. (2000) Economic Analysis of Precision Farming. In Borem et al. (Ed.), In: Agricultura de Precisao (pp. 147-172). Vicosa: Federal University of Vicosa.

  • Marur, C. J., & Ruano, O. (2001). A reference system for determination of developmental stages of upland cotton. Revista Brasileira de Oleaginosas e Fibrosa, 5(2), 313–317.

    Google Scholar 

  • Montomiya, A. V. A., Valente, I. M. Q., Molin, J. P., Motomiya, W. R., Biscaro, G. A., & Jordan, R. A. (2014). Vegetation index in cotton under rates of nitrogen and growth regulator. (In Portuguese, with English abstract). Revista. Semina, 35(1), 169–178.

    Google Scholar 

  • Oosterhuis, D. M. (1999). Growth and development of the cotton plant. In E. Cia, E. C. Freire, & W. J. Santos (Eds.), Cultura do algodoeiro (Cotton crop) (pp. 35–55). Piracicaba, Brazil: Potafos.

    Google Scholar 

  • Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44.

    Article  Google Scholar 

  • Portz, G., Vilanova, N. S. Jr., Trevisan, R. G., Molin, J. P., Portz, C., & Posada, L. V. (2014). Cotton field relations of plant height to biomass accumulation and n-uptake on conventional and narrow row systems. In 12th International Conference on Precision Agriculture. Proceedings… Sacramento, USA. (CD-ROM).

  • Rosolem, C. A., Oosterhuis, D. M., & Souza, F. S. D. (2013). Cotton response to mepiquat chloride and temperature. Scientia Agricola, 70(2), 82–87.

    Article  CAS  Google Scholar 

  • Salvador, A., & Antuniassi, U. R. (2011). Multispectral image for management zones identification and variable rate application in cotton areas. (In Portuguese, with English abstract). Revista Energia na. Agricultura, 26(2), 1–19.

    Google Scholar 

  • Shafri, H. Z. M., Salleh, M. A. M., & Ghiyamat, A. (2006). Hyperspectral remote sensing of vegetation using red edge position techniques. American Journal of Applied Sciences, 3(6), 1864–1871.

    Article  Google Scholar 

  • Silva, A. V., Pasculli, D. C., & Chiavegato, E. J. (2009). Thermal requirement and morphological characteristics of cotton cultivars. In V. Congresso (Ed.), Brasileiro de Algodão (pp. 105–110). Foz do Iguaçu-Brasil: EMBRAPA Algodão.

    Google Scholar 

  • Soil Taxonomy. (1999). A basic system of soil classification for making and interpreting soil surveys. USDA. Retrived May 25, 2015 from http://www.nrcs.usda.gov/Internet/FSE_DOCUMENTS/nrcs142p2_051232.pdf.

  • Trevisan, R. G., Vilanova, N. S. Jr., Portz, G., Eitelwein, M. T., & Molin, J. P. (2015). Use of crop height and optical sensor readings to predict mid-season cotton biomass. In 10th European Conference on Precision Agriculture, Tel Aviv. Precision Agriculture ‘15. Wageningen: Wageningen Academics Publishers, pp. 103–109.

  • Tukey, J. W. (1977). Exploratory data analysis (1st ed.). Massachusetts: Addison-Wesley.

    Google Scholar 

  • Vellidis, G., Ortiz, B., Ritchie, G., Peristeropoulos, A., Perry, C., & Rucker, K. (2009). Using GreenSeeker® to drive variable-rate application of plant growth regulators and defoliants on cotton. In 7th European Conference on Precision Agriculture. Proceedings. Wageningen, Netherlands. (CD-ROM).

  • Vondricka, J., & Lammers, P. S. (2009). Real-time controlled direct injection system for precision farming. Precision Agriculture, 10(5), 421–430.

    Article  Google Scholar 

  • Wanjura, D. F., Upchurch, D. R., Maas, S. J., & Winslow, J. C. (2003). Spectral detection of emergence in corn and cotton. Precision Agriculture, 4(4), 385–399.

    Article  Google Scholar 

  • Weis, M., & Sökefeld, M. (2010). Detection and identification of weeds. In E. C. Oerke et al. (Eds.), Precision crop protection: the challenge and use of heterogeneity (pp. 119–123). New York: Springer.

    Chapter  Google Scholar 

  • Woebbecke, D., Meyer, G., Bargen, K., & Mortensen, D. (1995). Color indices for weed identification under various soil, residue and lighting conditions. Transactions of the ASABE, 38(1), 259–269.

    Article  Google Scholar 

  • Zhao, D., & Oosterhuis, D. (1998). Physiologic and yield responses of shaded cotton to the plant growth regulator PGR-IV. Journal of Plant Growth Regulation, 17(1), 47–52.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Special thanks to the Foundation to Support the Development of Education, Science, and Technology of the State of Mato Grosso do Sul (Fundect), CNPq and to Wink and Campo Bom Farms in supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. H. R. Baio.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baio, F.H.R., Neves, D.C., Souza, H.B. et al. Variable rate spraying application on cotton using an electronic flow controller. Precision Agric 19, 912–928 (2018). https://doi.org/10.1007/s11119-018-9564-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-018-9564-7

Keywords

Navigation