Precision Agriculture

, Volume 19, Issue 5, pp 912–928 | Cite as

Variable rate spraying application on cotton using an electronic flow controller

  • F. H. R. BaioEmail author
  • D. C. Neves
  • H. B. Souza
  • A. J. F. Leal
  • R. C. Leite
  • J. P. Molin
  • S. P. Silva


Vegetation indices (VI) obtained by optical sensors have a positive correlation with various attributes of cotton plant growth. This work is aimed at evaluating the variable rate application of plant growth regulator (PGR) and fruit ripener on zones defined by VI and penological measurements using a sprayer equipped with a relatively low cost electronic flow controller on the height, percentage of open fruits, yield and net income. The work was done in a 92 ha field during crop seasons 2012/2013 and 2013/2014, and in a 202 ha field, during the crop season 2014/2015. Two spray applications were made using variable rate technology (VRT) of the PGR and one fruit ripener, in both harvest seasons, according to three VI classes formed by a previous mapping. The uniformity of the cotton height and opened fruits contribute to a similar yield across zones. Uniform plant height facilitates cotton harvest. The ripener helps to ensure all the cotton is ready to be harvested at the same time. In this trial, use of VRT technique to manage the PGR and fruit ripener application increased net income by US$152.28 ha−1, but this estimate is based on yields that are not statistically significantly different from the control. This research confirms that PGR and fruit ripener can be sufficiently managed with an electronic flow controller to result in more uniform cotton plant height and yields within fields, but it leaves open the question of whether VRT PGR is profitable even with the lower cost electronic flow controller.


Mepiquat chloride Ethephon VRT Red edge Vegetation index Cost Net income 



Special thanks to the Foundation to Support the Development of Education, Science, and Technology of the State of Mato Grosso do Sul (Fundect), CNPq and to Wink and Campo Bom Farms in supporting this work.


  1. Amaral, L. R., Molin, J. P., Portz, G., Finazzi, F. B., & Cortinove, L. (2015). Comparison of crop canopy reflectance sensors used to identify sugarcane biomass and nitrogen status. Precision Agriculture, 16(1), 15–28.CrossRefGoogle Scholar
  2. Antuniassi, U. R., Baio, F. H. R., & Sharp, T. C. (2015). Precision Agriculture. (In Portuguese.). In Abrapa (Ed.), Algodão no Cerrado do Brasil (pp. 767–806). 3rd ed. Brasília: Gráfica e Editora Positiva.Google Scholar
  3. ASAE (2000). Agricultural machinery management data. St. Joseph, ASAE Standards, 349–359. Retrived March 3, 2017 from
  4. Baio, F. H. R., & Antuniassi, U. R. (2011). Electronic control systems and path control to field sprayers (In Portuguese). In U. R. Antuniassi & W. Boller (Eds.), Application technology to annual crops (pp. 123–142). Passo Fundo: Aldeia Norte.Google Scholar
  5. Baio, F. H. R., Leal, A. J. F., Neves, D. C., Souza, H. B., & Gasparelli, D. L. (2015a). Immediate response: variable rate application in itself is already an expressive technological advance for crops (In Portugese). Cultivar Máquinas, 8(154), 12–18.Google Scholar
  6. Baio, F. H. R., Scarpin, I. M., & Silva, E. R. (2015b). Water sensitive paper and alternative photographic in deposition tests of droplets. (In Portuguese, with English abstract). Brazilian Journal of Biosystems Engineering, 9(4), 339–347.Google Scholar
  7. Conab (2016) Proposta de Preços Mínimos 2013/2014. Retrived March 3, 2016 from
  8. Di Rienzo, J. A., Casanoves, F., Balzarini, M. G., Gonzalez, L., Tablada, M., & Robledo, C. W. (1998). InfoStat. Retrived December 15, 2015 from
  9. Dodds, D. M., Banks, J. C., Barber, L. T., Boman, R. K., Brown, S. M., Edmisten, K. L., et al. (2010). Beltwide evaluation of commercially available plant growth regulators. Journal of Cotton Science, 3, 119–130.Google Scholar
  10. Echer, F. R., Rosolem, C. A., & Werle, R. (2013). Dose estimation of growth regulator to be applied to cotton as a function of its growth. (In Portuguese). Cuiabá/MT: Instituto Mato-Grossense do Algodão, Brasil.Google Scholar
  11. Embrapa. (2006). Brazilian soil classification system. (In Portuguese) (2nd ed.). Rio de Janeiro, Brazil: EMBRAPA.Google Scholar
  12. Ferreira, D. F. (2011). Sisvar: a computer statistical analysis system. Ciência e Agrotecnologia, 5(6), 1039–1042.CrossRefGoogle Scholar
  13. Ferreira, A. C. B., & Lamas, F. M. (2006). Use of plant growth regulators, CW defoliants, desiccants and fruit ripeners on cotton crop. (In Portuguese), Campina Grande/PB: EMBRAPA (Circular Técnica 95).Google Scholar
  14. Freitas, R. S., Tomaz, M. A., Ferreira, L. R., Berger, P. G., Pereira, C. J., & Cecon, P. R. (2006). Growth cotton submitted to trifloxysulfuron-sodium herbicide (In Portuguese). Planta Daninha, 24(1), 123-129.Google Scholar
  15. Griffin, T. W., & Lowenberg-DeBoer, J. (2005). Worldwide adoption and profitability of precision agriculture Implications for Brazil. Politica Agrícola, 14(4), 20–37.Google Scholar
  16. Gu, S., Evers, J. B., Zhang, L., Mao, L., Vos, J., & Li, Z. (2014). Modelling the structural response of cotton plants to mepiquat chloride and population density. Annals of Botany, 114(4), 877–887.CrossRefPubMedPubMedCentralGoogle Scholar
  17. Hunt, D. (2007) Farm power and machinery management. 10th ed. Waveland Press. 376p.Google Scholar
  18. Iqbal, J., Read, J. J., & Whisler, F. D. (2013). Using remote sensing and soil physical properties for predicting the spatial distribution of cotton lint yield. Turkish Journal of Field Crops, 18(2), 158–165.Google Scholar
  19. Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination—impact of seed rate, variety and growth stage. In 7th European Conference on Precision Agriculture. Proceedings. Wageningen, Netherlands. (CD-ROM).Google Scholar
  20. Kay, R., Edwards, W., & Duffy, P. A. (2015). Farm Management. 8th ed. McGraw-Hill Education. 480p.Google Scholar
  21. Lamas, F. M., & Ferreira, A. C. B. (2015). Growth regulators, defoliants and fruit ripeners. (In Portuguese.). In ABRAPA (Ed.), Algodão no Cerrado do Brasil (pp. 559-582). 3rd ed. Brasília: Gráfica e Editora Positiva.Google Scholar
  22. Lamas, F. M., Ferreira, A. C. B., & Bogiani, J. C. (2013). Points to consider in the growth regulator management in cotton crops. (In Portuguese), Dourados/MS: EMBRAPA (Comunicado Técnico 192).Google Scholar
  23. Lowenberg-DeBoer, J. (2000) Economic Analysis of Precision Farming. In Borem et al. (Ed.), In: Agricultura de Precisao (pp. 147-172). Vicosa: Federal University of Vicosa.Google Scholar
  24. Marur, C. J., & Ruano, O. (2001). A reference system for determination of developmental stages of upland cotton. Revista Brasileira de Oleaginosas e Fibrosa, 5(2), 313–317.Google Scholar
  25. Montomiya, A. V. A., Valente, I. M. Q., Molin, J. P., Motomiya, W. R., Biscaro, G. A., & Jordan, R. A. (2014). Vegetation index in cotton under rates of nitrogen and growth regulator. (In Portuguese, with English abstract). Revista. Semina, 35(1), 169–178.Google Scholar
  26. Oosterhuis, D. M. (1999). Growth and development of the cotton plant. In E. Cia, E. C. Freire, & W. J. Santos (Eds.), Cultura do algodoeiro (Cotton crop) (pp. 35–55). Piracicaba, Brazil: Potafos.Google Scholar
  27. Portz, G., Molin, J. P., & Jasper, J. (2012). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44.CrossRefGoogle Scholar
  28. Portz, G., Vilanova, N. S. Jr., Trevisan, R. G., Molin, J. P., Portz, C., & Posada, L. V. (2014). Cotton field relations of plant height to biomass accumulation and n-uptake on conventional and narrow row systems. In 12th International Conference on Precision Agriculture. Proceedings… Sacramento, USA. (CD-ROM).Google Scholar
  29. Rosolem, C. A., Oosterhuis, D. M., & Souza, F. S. D. (2013). Cotton response to mepiquat chloride and temperature. Scientia Agricola, 70(2), 82–87.CrossRefGoogle Scholar
  30. Salvador, A., & Antuniassi, U. R. (2011). Multispectral image for management zones identification and variable rate application in cotton areas. (In Portuguese, with English abstract). Revista Energia na. Agricultura, 26(2), 1–19.Google Scholar
  31. Shafri, H. Z. M., Salleh, M. A. M., & Ghiyamat, A. (2006). Hyperspectral remote sensing of vegetation using red edge position techniques. American Journal of Applied Sciences, 3(6), 1864–1871.CrossRefGoogle Scholar
  32. Silva, A. V., Pasculli, D. C., & Chiavegato, E. J. (2009). Thermal requirement and morphological characteristics of cotton cultivars. In V. Congresso (Ed.), Brasileiro de Algodão (pp. 105–110). Foz do Iguaçu-Brasil: EMBRAPA Algodão.Google Scholar
  33. Soil Taxonomy. (1999). A basic system of soil classification for making and interpreting soil surveys. USDA. Retrived May 25, 2015 from
  34. Trevisan, R. G., Vilanova, N. S. Jr., Portz, G., Eitelwein, M. T., & Molin, J. P. (2015). Use of crop height and optical sensor readings to predict mid-season cotton biomass. In 10th European Conference on Precision Agriculture, Tel Aviv. Precision Agriculture ‘15. Wageningen: Wageningen Academics Publishers, pp. 103–109.Google Scholar
  35. Tukey, J. W. (1977). Exploratory data analysis (1st ed.). Massachusetts: Addison-Wesley.Google Scholar
  36. Vellidis, G., Ortiz, B., Ritchie, G., Peristeropoulos, A., Perry, C., & Rucker, K. (2009). Using GreenSeeker® to drive variable-rate application of plant growth regulators and defoliants on cotton. In 7th European Conference on Precision Agriculture. Proceedings. Wageningen, Netherlands. (CD-ROM).Google Scholar
  37. Vondricka, J., & Lammers, P. S. (2009). Real-time controlled direct injection system for precision farming. Precision Agriculture, 10(5), 421–430.CrossRefGoogle Scholar
  38. Wanjura, D. F., Upchurch, D. R., Maas, S. J., & Winslow, J. C. (2003). Spectral detection of emergence in corn and cotton. Precision Agriculture, 4(4), 385–399.CrossRefGoogle Scholar
  39. Weis, M., & Sökefeld, M. (2010). Detection and identification of weeds. In E. C. Oerke et al. (Eds.), Precision crop protection: the challenge and use of heterogeneity (pp. 119–123). New York: Springer.CrossRefGoogle Scholar
  40. Woebbecke, D., Meyer, G., Bargen, K., & Mortensen, D. (1995). Color indices for weed identification under various soil, residue and lighting conditions. Transactions of the ASABE, 38(1), 259–269.CrossRefGoogle Scholar
  41. Zhao, D., & Oosterhuis, D. (1998). Physiologic and yield responses of shaded cotton to the plant growth regulator PGR-IV. Journal of Plant Growth Regulation, 17(1), 47–52.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • F. H. R. Baio
    • 1
    Email author
  • D. C. Neves
    • 1
  • H. B. Souza
    • 1
  • A. J. F. Leal
    • 2
  • R. C. Leite
    • 1
  • J. P. Molin
    • 3
  • S. P. Silva
    • 1
  1. 1.UFMSChapadão do SulBrazil
  2. 2.UFTMIturamaBrazil
  3. 3.USPPiracicabaBrazil

Personalised recommendations