Skip to main content
Log in

A general method to filter out defective spatial observations from yield mapping datasets

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

Yield maps are recognized as a valuable tool with regard to managing upcoming crop production but can contain a large amount of defective data that might result in misleading decisions. These anomalies must be removed before further processing to ensure the quality of future decisions. This paper proposes a new holistic methodology to filter out defective observations likely to be present in yield datasets. The notion of spatial neighbourhood has been refined to embrace the specific characteristics of such on-the-go vehicle based datasets. Observations are compared with their newly-defined spatial neighbourhood and the most abnormal ones are classified as defective observations based on a density-based clustering algorithm. The approach was conceived to be as non-parametric and automated as far as possible to pre-process a growing number of datasets without supervision. The proposed approach showed promising results on real yield datasets with the detection of well-known sources of errors such as filling and emptying times, speed changes and non-fully used cutting bar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Arslan, S. (2008). A grain flow model to simulate grain yield sensor response. Sensors, 8, 952–962.

    Article  PubMed  Google Scholar 

  • Arslan, S., & Colvin, T. (2002). Grain yield mapping: Yield sensing, yield reconstruction, and errors. Precision Agriculture, 3, 135–154.

    Article  Google Scholar 

  • Ben-Gal, I. (2005). Outlier detection. In The data mining and knowledge discovery handbook: A complete guide for practitioners and researchers. Boston, USA: Kluwer.

    Google Scholar 

  • Blackmore, B. S., & Moore, M. (1999). Remedial correction of yield map data. Precision Agriculture, 1, 53–66.

    Article  Google Scholar 

  • Chen, D., Lu, C.-T., Kou, Y., & Chen, F. (2008). On detecting spatial outliers. Geoinformatica, 12, 455–475.

    Article  Google Scholar 

  • Chung, S. O., Sudduth, K. A., & Drummond, S. T. (2002). Determining yield monitoring system delay time with geostatistical and data segmentation approaches. Transactions of the ASAE, 45, 915–926.

    Google Scholar 

  • Diker, K., Heerman, D. F., & Brodahl, M. K. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture, 5, 435–444.

    Article  Google Scholar 

  • Drummond, S. T., Fraisse, C. W., & Sudduth, K. A. (1999). Combine harvest area determination by vector processing of GPS position data. Transactions of the ASAE, 42, 1221–1227.

    Article  Google Scholar 

  • Duan, L., Xu, L., Guo, F., Lee, J., & Yan, B. (2007). A local-density based spatial clustering algorithm with noise. Information Systems, 32, 978–986.

    Article  Google Scholar 

  • Ester, M., Kriegel, H.-P., Sander, J., & Xu, X. (1996). A density-based algorithm for discovering clusters in large spatial databases with noise. In E. Simoudis, J. Han, & U. Fayyad (Eds.), Identification of local multivariate outliers (pp. 226–231). Palo Alto, CA, USA: AAAI Press.

    Google Scholar 

  • Filzmoser, P., Ruiz-Gazen, A., & Thomas-Agnan, C. (2014). Identification of local multivariate outliers. Statistical Papers, 55, 29–47.

    Article  Google Scholar 

  • Florin, M. J., McBratney, A. B., & Whelan, B. M. (2009). Quantification and comparison of wheat yield variation across space and time. European Journal of Agronomy, 30, 212–219.

    Article  Google Scholar 

  • Gogoi, P., Bhattacharyya, D., Borah, B., & Kalita, J. K. (2011). A survey of outlier detection methods in network anomaly identification. Computer Journal, 54, 570–588.

    Article  Google Scholar 

  • Griffin, T., Dobbins, C., Vyn, T., Florax, R., & Lowenberg-DeBoer, J. (2008). Spatial analysis of yield monitor data: Case studies of on-farm trials and farm management decision making. Precision Agriculture, 9, 269–283.

    Article  Google Scholar 

  • Harris, P., Brunsdon, C., Charlton, M., Juggins, S., & Clarke, A. (2014). Multivariate spatial outlier detection using robust geographically weighted methods. Mathematical Geosciences, 46, 1–31.

    Article  Google Scholar 

  • Hawkins, D. (1980). Identification of outliers. London, UK: Chapman & Hall.

    Book  Google Scholar 

  • Hu, J., Gong, C., & Zhang, Z. (2012). Dynamic compensation for impact-based grain flow sensor. In D. Li & Y. Chen (Eds.), Computer and computing technologies in agriculture V (CCTA 2011). IFIP advances in information and communication technology (Vol. 370, pp. 210–216). Berlin, Germany: Springer.

  • Hubert, M., & Van der Veeken, S. (2008). Outlier detection for skewed data. Journal of Chemometrics, 22, 235–246.

    Article  CAS  Google Scholar 

  • Jingtao, Q., & Shuhui, Z. (2010). Experiment research of impact-based sensor to monitor corn ear yield. In IEEE International conference on computer application and system modeling (Vol. 101, pp. 187–192).

  • Lee, D. H., Sudduth, K. A., Drummond, S. T., Chung, S. O., & Myers, D. B. (2012). Automated yield map delay identification using phase correlation methodology. Transactions of the ASABE, 55, 743–752.

    Article  Google Scholar 

  • Leroux, C., Jones, H., Clenet, A., Dreux, B., Becu, M., & Tisseyre, B. (2017). Simulating yield datasets: An opportunity to improve data filtering algorithms. In J. A. Taylor, D. Cammarano, A. Preashar, & A. Hamilton (Eds.), Proceedings of the 11th European conference on precision agriculture, precision agriculture ’17. Advances in Animal Biosciences (Vol. 8(2), pp. 600–605). https://doi.org/10.1017/S2040470017000899.

  • Lu, C.-T., Chen, D., & Kou, Y. (2003). Algorithms for spatial outlier detection. In X. Wu, A. Tuzhilin, & J. Shavlik (Eds.), Proceedings of the third IEEE international conference on data mining (pp. 597–600). Los Alamitos, CA, USA: IEEE Press.

    Chapter  Google Scholar 

  • Lyle, G., Bryan, B., & Ostendorf, B. (2013). Post-processing methods to eliminate erroneous grain yield measurements: Review and directions for future development. Precision Agriculture, 15, 377–402.

    Article  Google Scholar 

  • Pringle, M. J., McBratney, A. B., Whelan, B. M., & Taylor, J. A. (2003). A preliminary approach to assessing the opportunity for site-specific crop management in a field, using a yield monitor. Agricultural Systems, 76, 273–292.

    Article  Google Scholar 

  • R Core Team. (2013). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

    Google Scholar 

  • Reinke, R., Dankowicz, H., Phelan, J., & Kang, W. (2011). A dynamic grain flow model for a mass flow yield sensor on a combine. Precision Agriculture, 12, 732–749.

    Article  Google Scholar 

  • Reitz, P., & Kutzbach, H. D. (1996). Investigations on a particular yield mapping system for combine harvesters. Computers and Electronics in Agriculture, 14, 137–150.

    Article  Google Scholar 

  • Robinson, T. P., & Metternicht, G. (2005). Comparing the performance of techniques to improve the quality of yield maps. Agricultural Systems, 85, 19–41.

    Article  Google Scholar 

  • Sawant, K. (2014). Adaptive methods for determining DBSCAN parameters. International Journal of Innovative Science, Engineering & Technology, 1, 330–334.

    Google Scholar 

  • Simbahan, G. C., Dobermann, A., & Ping, J. L. (2004). Screening yield monitor data improves grain yield maps. Agronomy Journal, 96, 1091–1102.

    Article  Google Scholar 

  • Spekken, M., Anselmi, A. A., & Molin, J. P. (2013). A simple method for filtering spatial data. In J. V. Stafford (Ed.), Precision agriculture’13: Proceedings of the 9th European conference on precision agriculture (pp. 259–266). Wageningen, The Netherlands: Wageningen Academic Publishers.

    Google Scholar 

  • Sudduth, K., & Drummond, S. T. (2007). Yield Editor: Software for removing errors from crop yield maps. Agronomy Journal, 99, 1471.

    Article  Google Scholar 

  • Sun, W., Whelan, B., McBratney, A. B., & Minasny, B. (2013). An integrated framework for software to provide yield data cleaning and estimation of an opportunity index for site-specific crop management. Precision Agriculture, 14, 376–391.

    Article  Google Scholar 

  • Taylor, J. A., Mcbratney, A. B., & Whelan, B. M. (2007). Establishing management classes for broadacre agricultural production. Agronomy Journal, 99, 1366–1376.

    Article  Google Scholar 

  • Tobler, W. (1970). A computer movie simulating urban growth in the Detroit region. Economic Geography, 46, 234–240.

    Article  Google Scholar 

  • Zhao, C., Huang, W., Chen, L., Meng, Z., Wang, Y., & Xu, F. (2010). A harvest area measurement system based on ultrasonic sensors and DGPS for yield map correction. Precision Agriculture, 11, 163–180.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Corentin Leroux.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Leroux, C., Jones, H., Clenet, A. et al. A general method to filter out defective spatial observations from yield mapping datasets. Precision Agric 19, 789–808 (2018). https://doi.org/10.1007/s11119-017-9555-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-017-9555-0

Keywords