Precision Agriculture

, Volume 19, Issue 1, pp 147–160 | Cite as

Canopy sensor placement for variable-rate nitrogen application in sugarcane fields

  • Lucas R. AmaralEmail author
  • Rodrigo G. Trevisan
  • José P. Molin


Nitrogen (N) fertilization is challenging for sugarcane, and machine-based canopy sensors appear as an alternative to allow variable-rate N fertilization. Top or sidedressing N is applied in each crop row and crop spatial variability behavior must be understood to allow proper sensor placement and applicator configurations in order to optimize N fertilization. Thus, the goal of this study was to investigate sugarcane crop variability and N prescription error when working with various sensor placements and boom sections. The approaches involved post-processing N prescription maps and real-time application, varying the number of sensors used and calculating the N rate for the applicator boom sections. Sugarcane fields show high crop variability due to their semi-perennial cropping system, which causes unpredictability of sensor readings from adjacent rows, ideally suggesting one sensor for each row in order to obtain more detailed plant-vigor information. Moreover, the machine must be able to apply fertilizer for each individual row to allow the most reliable application of N rate, ensuring optimization of crop response to variable-rate N application.


Optical sensor Nitrogen fertilization Proximal sensing 



The authors acknowledge the Studies and Projects Financing Agency (FINEP) from the Ministry of Science and Technology through the PROSENSAP project for its financial support; São Paulo Research Foundation (FAPESP) for providing a graduate scholarship to the first author (Project Numbers 2009/03372-0 and 2011/08882-7); São Martinho Mill team and Máquinas Agrícolas Jacto SA (Jacto Agricultural Machinery) for the partnership.


  1. Amaral, L. R., & Molin, J. P. (2014). The effectiveness of three vegetation indices obtained from a canopy sensor in identifying sugarcane response to nitrogen. Agronomy Journal, 106(1), 273–280. doi: 10.2134/agronj2012.0504.CrossRefGoogle Scholar
  2. Amaral, L. R., Molin, J. P., & Schepers, J. S. (2015). Algorithm for variable-rate nitrogen application in sugarcane based on active crop canopy sensor. Agronomy Journal, 107(4), 1513–1523. doi: 10.2134/agronj14.0494.CrossRefGoogle Scholar
  3. Barnes, E. M., Clarke, T. R., Richards, S. E., Colaizzi, P. D., Haberland, J., Kostrzewski, M., et al. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground-based multispectral data. In: Proceedings of 5th International Conference on Precision Agriculture, Madison, WI, USA: CSSA, ASA, SSSAGoogle Scholar
  4. Cambardella, C. A., Moorman, T. B., Novak, J. M., Parkin, T. B., Karlen, D. L., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central Iowa soils. Soil Science Society of America Journal, 58, 1501–1511.CrossRefGoogle Scholar
  5. Lofton, J., Tubana, B. S., Kanke, Y., Teboh, J., & Viator, H. (2012). Predicting sugarcane response to nitrogen using a canopy reflectance-based response index value. Agronomy Journal, 104(1), 106–113. doi: 10.2134/agronj2011.0254.CrossRefGoogle Scholar
  6. Pena-Yewtukhiw, E. M., Schwab, G. J., Grove, J. H., Murdock, L. W., & Johnson, J. T. (2008). Spatial analysis of early wheat canopy normalized difference vegetative index: Determining appropriate observation scale. Agronomy Journal, 100(2), 454–462. doi: 10.1007/s13398-014-0173-7.2.CrossRefGoogle Scholar
  7. Portz, G., Molin, J. P., & Jasper, J. (2011). Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agriculture, 13(1), 33–44. doi: 10.1007/s11119-011-9243-4.CrossRefGoogle Scholar
  8. QGIS Development Team. (2016). QGIS Geographic Information System. Open source geospatial foundation project. Accessed July 10 2016.
  9. Roberts, D. F., Adamchuk, V. I., Shanahan, J. F., Ferguson, R. B., & Schepers, J. S. (2009). Optimization of crop canopy sensor placement for measuring nitrogen status in corn. Agronomy Journal, 101(1), 140–149. doi: 10.2134/agronj2008.0072x.CrossRefGoogle Scholar
  10. Vieira, S. R., de Carvalho, J. R. P., & González, A. P. (2010). Jack knifing for semivariogram validation. Bragantia, 69, 97–105. doi: 10.1590/S0006-87052010000500011.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Lucas R. Amaral
    • 1
    Email author
  • Rodrigo G. Trevisan
    • 2
  • José P. Molin
    • 2
  1. 1.University of Campinas, School of Agricultural EngineeringCampinasBrazil
  2. 2.University of São Paulo, Luiz de Queiroz College of Agriculture, Department of Biosystems Engineering, Precision Agriculture LaboratoryPiracicabaBrazil

Personalised recommendations