Phenological analysis of unmanned aerial vehicle based time series of barley imagery with high temporal resolution

Article

Abstract

Emerging strategies and technologies in agriculture, such as precision farming and phenotyping depend on detailed data on all stages of crop development. Unmanned aerial vehicles promise to deliver such time series as they allow very frequent measurements. In this study, we analyse a field trial with two barley cultivars and two contrasting sowing densities in a random plot design over 2 consecutive years using the aerial images of 28 flight campaigns, providing a very high temporal resolution. From empirically corrected RGB images, we calculated the green-red-vegetation-index (GRVI) and evaluated the time-series for its potential to track the seasonal development of the crop. The time series shows a distinct pattern during crop development that reflected the different developmental stages from germination to harvest. The simultaneous comparison to ground based assessment of phenological stages, allowed us to relate features of the airborne time series to actual events in plant growth and development. The measured GRVI values range from −0.10 (bare soil) to 0.20 (fully developed crop) and show a clear drop at time of ear pushing and ripening. Lower sowing densities were identified by smaller GRVI values during the vegetative growth phase. Additionally, we could show that the time of corn filling was strongly fixed and happened around 62 days after seeding in both years and under both density treatments. This case study provides a proof-of-concept evaluation how RGB data can be utilized to provide quantitative data in crop management and precision agriculture.

Keywords

UAV Imaging Agriculture Phenotyping Precision farming Time series 

Supplementary material

11119_2017_9504_MOESM1_ESM.zip (177.6 mb)
Supplementary material 1 (ZIP 181856 kb)

References

  1. Aasen, H., Burkart, A., Bolten, A., & Bareth, G. (2015). Generating 3D hyperspectral information with lightweight UAV snapshot cameras for vegetation monitoring: From camera calibration to quality assurance. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 245–259. doi:10.1016/j.isprsjprs.2015.08.002.CrossRefGoogle Scholar
  2. Anderson, K., & Gaston, K. J. (2013). Lightweight unmanned aerial vehicles will revolutionize spatial ecology. Frontiers in Ecology and the Environment, 11(3), 138–146. doi:10.1890/120150.CrossRefGoogle Scholar
  3. Baluja, J., Diago, M. P., Balda, P., Zorer, R., Meggio, F., Morales, F., et al. (2012). Assessment of vineyard water status variability by thermal and multispectral imagery using an unmanned aerial vehicle (UAV). Irrigation Science, 30(6), 511–522. doi:10.1007/s00271-012-0382-9.CrossRefGoogle Scholar
  4. Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. Remote sensing reviews, 13(1–2), 95–120. doi:10.1080/02757259509532298.CrossRefGoogle Scholar
  5. Bendig, J., Bolten, A., Bennertz, S., Broscheit, J., Eichfuss, S., & Bareth, G. (2014). Estimating biomass of barley using crop surface models (CSMs) derived from UAV-Based RGB imaging. Remote Sensing, 6(11), 10395–10412. doi:10.3390/rs61110395.CrossRefGoogle Scholar
  6. Bendig, J., Willkomm, M., Tilly, N., Gnyp, M. L., Bennertz, S., Qiang, C., et al. (2013). Very high resolution crop surface models (CSMs) from UAV-based stereo images for rice growth monitoring In Northeast China. ISPRS—International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XL-1/W2, 45–50. doi:10.5194/isprsarchives-XL-1-W2-45-2013.CrossRefGoogle Scholar
  7. Berni JAJ, Zarco-Tejada PJ, Surez L, González-Dugo V, Fereres E (2008) Remote sensing of vegetation from uav platforms using lightweight multispectral and thermal imaging sensors. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIIGoogle Scholar
  8. Bongiovanni, R., & Lowenberg-DeBoer, J. (2004). Precision agriculture and sustainability. Precision Agriculture, 5(4), 359–387.CrossRefGoogle Scholar
  9. Burkart, A. (2016). Multitemporal assessment of crop parameters using multisensorial flying platforms. University of Bonn. Retrieved from http://hss.ulb.uni-bonn.de/2016/4225/4225.htm
  10. Burkart, A., Aasen, H., Alonso, L., Menz, G., Bareth, G., & Rascher, U. (2015). Angular dependency of hyperspectral measurements over wheat characterized by a novel UAV based goniometer. Remote Sensing, 7(1), 725–746. doi:10.3390/rs70100725.CrossRefGoogle Scholar
  11. Burkart, A., Cogliati, S., Schickling, A., & Rascher, U. (2014). A novel UAV-Based ultra-light weight spectrometer for field spectroscopy. IEEE Sensors Journal, 14(1), 62–67.CrossRefGoogle Scholar
  12. Capolupo, A., Kooistra, L., Berendonk, C., Boccia, L., & Suomalainen, J. (2015). Estimating plant traits of grasslands from UAV-acquired hyperspectral images: A comparison of statistical approaches. ISPRS International Journal of Geo-Information, 4(4), 2792–2820. doi:10.3390/ijgi4042792.CrossRefGoogle Scholar
  13. Casadesús, J., Kaya, Y., Bort, J., Nachit, M. M., Araus, J. L., Amor, S., et al. (2007). Using vegetation indices derived from conventional digital cameras as selection criteria for wheat breeding in water-limited environments. Annals of Applied Biology, 150(2), 227–236. doi:10.1111/j.1744-7348.2007.00116.x.CrossRefGoogle Scholar
  14. Davidson, J., Christian, K., Jones, D., & Bremner, P. (1985). Responses of wheat to vernalization and photoperiod. Australian Journal of Agricultural Research, 36(3), 347. doi:10.1071/AR9850347.CrossRefGoogle Scholar
  15. Dorrington, G. E. (2007). Performance of battery-powered airships. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 221(1), 91–104.CrossRefGoogle Scholar
  16. Fiorani, F., & Schurr, U. (2013). Future scenarios for plant phenotyping. Annual Review of Plant Biology, 64(1), 267–291.CrossRefPubMedGoogle Scholar
  17. Gamon, J. A., Peņuelas, J., & Field, C. B. (1992). A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment, 41(1), 35–44.CrossRefGoogle Scholar
  18. Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., et al. (2010). Food security: The challenge of feeding 9 billion people. Science (New York, N.Y.), 327(5967), 812–818. doi:10.1126/science.1185383.CrossRefGoogle Scholar
  19. Grenzdörffer, G. J.,& Niemeyer, F. (2011). UAV Based BRDF-Measurements of Agricultural surfaces with Pfiffikus. UAV-g 2011, Conference on Unmanned Aerial Vehicle in Geomatics,. Zurich, Switzerland: International Archives of the Photogrammetry, Remote Sensing and Spation Information Sciences.Google Scholar
  20. Hess, R. (2010). An open-source SIFT Library. In Proceedings of the international conference on Multimedia - MM’10 (p. 1493). New York, USA: ACM Press. doi:10.1145/1873951.1874256
  21. Jacobs, N., Burgin, W., Fridrich, N., Abrams, A., Miskell, K., Braswell, B. H., et al. (2009). The global network of outdoor webcams. In Proceedings of the 17th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems - GIS’09 (p. 111). New York, USA: ACM Press. doi:10.1145/1653771.1653789
  22. Julitta, T., Cremonese, E., Migliavacca, M., Colombo, R., Galvagno, M., Siniscalco, C., et al. (2014). Using digital camera images to analyse snowmelt and phenology of a subalpine grassland. Agricultural and Forest Meteorology, 198–199, 116–125. doi:10.1016/j.agrformet.2014.08.007.CrossRefGoogle Scholar
  23. Keating, B., Carberry, P., Hammer, G., Probert, M., Robertson, M., Holzworth, D., et al. (2003). An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy, 18(3–4), 267–288. doi:10.1016/S1161-0301(02)00108-9.CrossRefGoogle Scholar
  24. Lancashire, P. D., Bleiholder, H., van den Boom, T., Langelüddeke, P., Stauss, R., Weber, E., et al. (1991). A uniform decimal code for growth stages of crops and weeds. Annals of Applied Biology, 119(3), 561–601. doi:10.1111/j.1744-7348.1991.tb04895.x.CrossRefGoogle Scholar
  25. Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60(2), 91–110. doi:10.1023/B:VISI.0000029664.99615.94.CrossRefGoogle Scholar
  26. McBratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.CrossRefGoogle Scholar
  27. Meier, U., Bleiholder, H., Buhr, L., Feller, C., Hack, H., Heß, M., et al. (2009). The BBCH system to coding the phenological growth stages of plants-history and publications. Journal für Kulturpflanzen, 61(2), 41–52.Google Scholar
  28. Motohka, T., Nasahara, K. N., Oguma, H., & Tsuchida, S. (2010). Applicability of green-red vegetation index for remote sensing of vegetation phenology. Remote Sensing, 2(10), 2369–2387. doi:10.3390/rs2102369.CrossRefGoogle Scholar
  29. Nijland, W., de Jong, R., de Jong, S. M., Wulder, M. A., Bater, C. W., & Coops, N. C. (2014). Monitoring plant condition and phenology using infrared sensitive consumer grade digital cameras. Agricultural and Forest Meteorology, 184, 98–106. doi:10.1016/j.agrformet.2013.09.007.CrossRefGoogle Scholar
  30. Peña Barragán, J. M., Kelly, M., Castro, A. I. de, & López Granados, F. (2012). Object-based approach for crop row characterization in UAV images for site-specific weed management. In Proceedings of the 4th GEOBIO (pp. 426–430). Rio de Janeiro. http://digital.csic.es/handle/10261/98054
  31. Pettorelli, N. (2013). The normalized difference vegetation index (First Edit.). Oxford: Oxford University Press.CrossRefGoogle Scholar
  32. Piekarski, P., & Zwoliński, Z. (2014). temporal variation in vegetation indexes for Pine and Beech Stands during the vegetation season, Szczecin Lowland. Poland. Quaestiones Geographicae, 33(3), 131–143. doi:10.2478/quageo-2014-0037.Google Scholar
  33. Rascher, U., Alonso, L., Burkart, A., Cilia, C., Cogliati, S., Colombo, R., et al. (2015). Sun-induced fluorescence - a probe of photosynthesis beyond greenness: First maps from the imaging spectrometer HyPlant. Global Change Biology, 21(12), 4673–4684. doi:10.1111/gcb.13017.CrossRefPubMedGoogle Scholar
  34. Rasmussen, J., Ntakos, G., Nielsen, J., Svensgaard, J., Poulsen, R. N., & Christensen, S. (2016). Are vegetation indices derived from consumer-grade cameras mounted on UAVs sufficiently reliable for assessing experimental plots? European Journal of Agronomy, 74, 75–92. doi:10.1016/j.eja.2015.11.026.CrossRefGoogle Scholar
  35. Sakamoto, T., Gitelson, A. A., Nguy-Robertson, A. L., Arkebauer, T. J., Wardlow, B. D., Suyker, A. E., et al. (2012). An alternative method using digital cameras for continuous monitoring of crop status. Agricultural and Forest Meteorology, 154–155, 113–126. doi:10.1016/j.agrformet.2011.10.014.CrossRefGoogle Scholar
  36. Schaepman-Strub, G., Schaepman, M. E., Painter, T. H., Dangel, S., & Martonchik, J. V. (2006). Reflectance quantities in optical remote sensing—Definitions and case studies. Remote Sensing of Environment, 103(1), 27–42.CrossRefGoogle Scholar
  37. von Bueren, S. K., Burkart, A., Hueni, A., Rascher, U., Tuohy, M. P., & Yule, I. J. (2015). Deploying four optical UAV-based sensors over grassland: Challenges and limitations. Biogeosciences, 12(1), 163–175. doi:10.5194/bg-12-163-2015.CrossRefGoogle Scholar
  38. Wang, G., Schmalenbach, I., von Korff, M., Léon, J., Kilian, B., Rode, J., et al. (2010). Association of barley photoperiod and vernalization genes with QTLs for flowering time and agronomic traits in a BC2DH population and a set of wild barley introgression lines. TAG. Theoretical and applied genetics. Theoretische und angewandte Genetik, 120(8), 1559–1574. doi:10.1007/s00122-010-1276-y.CrossRefPubMedPubMedCentralGoogle Scholar
  39. Zarco-Tejada, P. J. J., González-Dugo, V., & Berni, J. A. J. A. J. (2011). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment, 117, 322–337. doi:10.1016/j.rse.2011.10.007.CrossRefGoogle Scholar
  40. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture, 13(6), 693–712. doi:10.1007/s11119-012-9274-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. Burkart
    • 1
  • V. L. Hecht
    • 1
  • T. Kraska
    • 2
  • U. Rascher
    • 1
  1. 1.Forschungszentrum JülichInstitute of Bio- and GeosciencesJülichGermany
  2. 2.Field Lab Campus Klein-AltendorfAgricultural Faculty, University of BonnRheinbachGermany

Personalised recommendations