Arnó, J., Escolà, A., Vallès, J. M., Llorens, J., Sanz, R., Masip, J., et al. (2013). Leaf area index estimation in vineyards using a ground-based LiDAR scanner. Precision Agriculture,
14(3), 290–306.
Article
Google Scholar
Auat Cheein, F. A., Guivant, J., Sanz, R., Escolà, A., Yandún, F., Torres-Torriti, M., et al. (2015). Real-time approaches for characterization of fully and partially scanned canopies in groves. Computers and Electronics in Agriculture,
118, 361–371.
Article
Google Scholar
Chen, Y., Zhu, H., & Ozkan, H. E. (2013). Real-time tree foliage density estimation with laser scanning sensor for variable-rate tree sprayer development. Paper no 131596009. St Joseph, MI, USA: ASABE.
Google Scholar
Chéné, Y., Rousseau, D., Lucidarme, P., Bertheloot, J., Caffier, V., Morel, P., et al. (2012). On the use of depth camera for 3D phenotyping of entire plants. Computers and Electronics in Agriculture,
82, 122–127.
Article
Google Scholar
CloudCompare [GPL software] v2.6.1. (2015). http://www.cloudcompare.org. Accessed on May 13, 2015.
Díaz-Varela, R., de la Rosa, R., León, L., & Zarco-Tejada, P. (2015). High-Resolution airborne uav imagery to assess olive tree crown parameters using 3D photo reconstruction: Application in breeding trials. Remote Sensing,
7(4), 4213–4232.
Article
Google Scholar
Escolà, A. Camp, F. Solanelles, F. Llorens, J. Planas, S. Rosell, J. R. et al. (2007). Variable dose rate sprayer prototype for tree crops based on sensor measured canopy characteristics. In J. V Stafford (Ed.), Precision Agriculture’07. Proceedings of the 6th European Conference on Precision Agriculture (pp. 563–571). The Netherlands: Wageningen Academic Publishers.
Escolà, A., Martinez-Casasnovas. J. M.. Rufat, J., Arbones, A., Sanz, R., Sebe, F., et al. (2015). A mobile terrestrial laser scanner for tree crops: point cloud generation, information extraction and validation in an intensive olive orchard. In J. V Stafford (Ed.), Precision Agriculture’15. Proceedings of the 10th European Conference on Precision Agriculture (pp. 337–344). The Netherlands: Wageningen Academic Publishers.
Gil, E., Arnó, J., Llorens, J., Sanz, R., Llop, J., Rosell-Polo, J., et al. (2014). Advanced technologies for the improvement of spray application techniques in Spanish Viticulture: An overview. Sensors,
14(1), 691–708.
Article
PubMed
PubMed Central
Google Scholar
Gongal, A., Amatya, S., Karkee, M., Zhang, Q., & Lewis, K. (2015). Sensors and systems for fruit detection and localization: A review. Computers and Electronics in Agriculture,
116, 8–19.
Article
Google Scholar
Lee, K. H., & Ehsani, R. (2009). A laser scanner based measurement system for quantification of citrus tree geometric characteristics. Applied Engineering in Agriculture,
25(5), 777–788.
Article
Google Scholar
Li, L., Zhang, Q., & Huang, D. (2014). A review of imaging techniques for plant phenotyping. Sensors,
14(11), 20078–20111.
Article
PubMed
PubMed Central
Google Scholar
Lordan, J., Pascual, M., Fonseca, F., Montilla, V., Papio, J., Rufat, J., et al. (2015). An image-based method to study the fruit tree canopy and the pruning biomass production in a peach orchard. HortScience,
50(12), 1809–1817.
Google Scholar
Méndez, V., Rosell-Polo, J. R., Sanz, R., Escolà, A., & Catalán, H. (2014). Deciduous tree reconstruction algorithm based on cylinder fitting from mobile terrestrial laser scanned point clouds. Biosystems Engineering,
124, 78–88.
Article
Google Scholar
Miranda-Fuentes, A., Llorens, J., Gamarra-Diezma, J., Gil-Ribes, J., & Gil, E. (2015). Towards an optimized method of olive tree crown volume measurement. Sensors,
15(2), 3671–3687.
Article
PubMed
PubMed Central
Google Scholar
Moorthy, I., Miller, J. R., Berni, J. A. J., Zarco-Tejada, P., Hu, B., & Chen, J. (2011). Field characterization of olive (Olea europaea L.) tree crown architecture using terrestrial laser scanning data. Agricultural and Forest Meteorology,
151(2), 204–214.
Article
Google Scholar
Nock, C. A., Taugourdeau, O., Delagrange, S., & Messier, C. (2013). Assessing the potential of low-cost 3D cameras for the rapid measurement of plant woody structure. Sensors,
13(12), 16216–16233.
Article
PubMed
PubMed Central
Google Scholar
Pallejà, T., Tresánchez, M., Teixidó, M., Sanz, R., Rosell, J. R., & Palacín, J. (2010). Sensitivity of tree volume measurement to trajectory errors from a terrestrial LIDAR scanner. Agricultural and Forest Meteorology,
150(11), 1420–1427.
Article
Google Scholar
Rosell, J. R., Llorens, J., Sanz, R., Arnó, J., Ribes-Dasi, M., Masip, J., et al. (2009a). Obtaining the three-dimensional structure of tree orchards from remote 2D terrestrial LIDAR scanning. Agricultural and Forest Meteorology,
149(9), 1505–1515.
Article
Google Scholar
Rosell, J. R., & Sanz, R. (2012). A review of methods and applications of the geometric characterization of tree crops in agricultural activities. Computers and Electronics in Agriculture,
81, 124–141.
Article
Google Scholar
Rosell, J. R., Sanz, R., Llorens, J., Arnó, J., Escolà, A., Ribes-Dasi, M., et al. (2009b). A tractor-mounted scanning LIDAR for the non-destructive measurement of vegetative volume and surface area of tree-row plantations: A comparison with conventional destructive measurements. Biosystems Engineering,
102(2), 128–134.
Article
Google Scholar
Rosell-Polo, J. R., Cheein, F. A., Gregorio, E., Andújar, D., Puigdomènech, L., Masip, J., et al. (2015). Advances in structured light sensors applications in precision agriculture and livestock farming. Advances in Agronomy,
133, 71–112.
Article
Google Scholar
Rufat, J., Villar, J. M., Pascual, M., Falguera, V., & Arbonés, A. (2014). Productive and vegetative response to different irrigation and fertilization strategies of an Arbequina olive orchard grown under super-intensive conditions. Agricultural Water Management,
144, 33–41.
Article
Google Scholar
Sanz-Cortiella, R., Llorens-Calveras, J., Escolà, A., Arnó-Satorra, J., Ribes-Dasi, M., Masip-Vilalta, J., et al. (2011). Innovative LIDAR 3D dynamic measurement system to estimate fruit-tree leaf area. Sensors,
11(6), 5769–5791.
Article
PubMed
PubMed Central
Google Scholar
Torres-Sánchez, J., López-Granados, F., Serrano, N., Arquero, O., & Peña, J. M. (2015). High-Throughput 3-D monitoring of agricultural-tree plantations with unmanned aerial vehicle (UAV) technology. PLoS ONE,
10(6), e0130479.
Article
PubMed
PubMed Central
Google Scholar
Walklate, P. J. (1989). A Laser scanning instrument for measuring crop geometry. Agricultural and Forest Meteorology,
46, 275–284.
Article
Google Scholar
Walklate, P. J., Cross, J. V., Richardson, G. M., Murray, R. A., & Baker, D. E. (2002). Comparison of different spray volume deposition models using LIDAR measurements of apple orchards. Biosystems Engineering,
82(3), 253–267.
Article
Google Scholar
Wang, Z., Zhang, L., Fang, T., Mathiopoulos, P. T., Qu, H., Chen, D., et al. (2014). A Structure-aware global optimization method for reconstructing 3-D Tree models from terrestrial laser scanning data. IEEE Transactions on Geoscience and Remote Sensing,
52(9), 5653–5669.
Article
Google Scholar
Wei, J., & Salyani, M. (2005). Development of a laser scanner for measuring tree canopy characteristics: phase 2. Foliage density measurement. Transactions of the ASABE,
48(4), 1595–1601.
Article
Google Scholar
Zarco-Tejada, P. J., Diaz-Varela, R., Angileri, V., & Loudjani, P. (2014). Tree height quantification using very high resolution imagery acquired from an unmanned aerial vehicle (UAV) and automatic 3D photo-reconstruction methods. European Journal of Agronomy,
55, 89–99.
Article
Google Scholar