Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain

Abstract

Active canopy sensor (ACS)—based precision nitrogen (N) management (PNM) is a promising strategy to improve crop N use efficiency (NUE). The GreenSeeker (GS) sensor with two fixed bands has been applied to improve winter wheat (Triticum aestivum L.) N management in North China Plain (NCP). The Crop Circle (CC) ACS-470 active sensor is user configurable with three wavebands. The objective of this study was to develop a CC ACS-470 sensor-based PNM strategy for winter wheat in NCP and compare it with GS sensor-based N management strategy, soil Nmin test-based in-season N management strategy and conventional farmer’s practice. Four site-years of field N rate experiments were conducted from 2009 to 2013 to identify optimum CC vegetation indices for estimating early season winter wheat plant N uptake (PNU) and grain yield in Quzhou Experiment Station of China Agricultural University located in Hebei province of NCP. Another nine on-farm experiments were conducted at three different villages in Quzhou County in 2012/2013 to evaluate the performance of the developed N management strategy. The results indicated that the CC ACS-470 sensor could significantly improve estimation of early season PNU (R2 = 0.78) and grain yield (R2 = 0.62) of winter wheat over GS sensor (R2 = 0.60 and 0.33, respectively). All three in-season N management strategies achieved similar grain yield as compared with farmer’s practice. The three PNM strategies all significantly reduced N application rates and increased N partial factor productivity (PFP) by an average of 61–67 %. It is concluded that the CC sensor can improve estimation of early season winter wheat PNU and grain yield as compared to the GS sensor, but the PNM strategies based on these two sensors perform equally well for improving winter wheat NUE in NCP. More studies are needed to further develop and evaluate these active sensor-based PNM strategies under more diverse on-farm conditions.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  1. Barnes, E., Clarke, T., Richards, S., Colaizzi, P., Haberland, J., & Kostrzewski, M. et al. (2000). Coincident detection of crop water stress, nitrogen status and canopy density using ground based multispectral data. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Proceding the 5th international conference on precision agriculture. 16–19 July 2000, Bloomington, MN.

  2. Bijay-Singh, Sharma, R. K., Jaspreet-Kaur, Jat, M. L., Martin, K. L., Yadvinder-Singh, et al. (2011). Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development, 31(3), 589–603.

  3. Broge, N. H., & Leblanc, E. (2000). Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density. Remote Sensing of Environment, 76(2), 156–172.

    Article  Google Scholar 

  4. Buschmann, C., & Nagel, E. (1993). In vivo spectroscopy and internal optics of leaves as basis for remote sensing of vegetation. International Journal of Remote Sensing, 14(4), 711–722.

    Article  Google Scholar 

  5. Cao, Q., Cui, Z., Chen, X., Khosla, R., Dao, T. H., & Miao, Y. (2012). Quantifying spatial variability of indigenous nitrogen supply for precision nitrogen management in small scale farming. Precision Agriculture, 13(1), 45–61.

    Article  Google Scholar 

  6. Cao, Q., Miao, Y., Feng, G., Gao, X., Li, F., Liu, B., et al. (2015). Active canopy sensing of winter wheat nitrogen status: An evaluation of two sensor systems. Computers and Electronics in Agriculture, 112, 54–67.

    Article  Google Scholar 

  7. Cao, Q., Miao, Y., Shen, J., Yu, W., Yuan, F., Cheng, S., et al. (2016). Improving in-season estimation of rice yield potential and responsiveness to topdressing nitrogen application with Crop Circle active crop canopy sensor. Precision Agriculture, 17(2), 136–154.

    Article  Google Scholar 

  8. Cao, Q., Miao, Y., Wang, H., Huang, S., Cheng, S., Khosla, R., et al. (2013). Non-destructive estimation of rice plant nitrogen status with Crop Circle multispectral active canopy sensor. Field Crops Research, 154, 133–144.

    Article  Google Scholar 

  9. Chen, J. M. (1996). Evaluation of vegetation indices and a modified simple ratio for boreal applications. Canadian Journal of Remote Sensing, 22(3), 229–242.

    Article  Google Scholar 

  10. Chen, X., Zhang, F., Römheld, V., Horlacher, D., Schulz, R., Böning-Zilkens, M., et al. (2006). Synchronizing N supply from soil and fertilizer and N demand of winter wheat by an improved Nmin method. Nutrient Cycling in Agroecosystems, 74(2), 91–98.

    Article  Google Scholar 

  11. Cui, Z., Zhang, F., Chen, X., Dou, Z., & Li, J. (2010). In-season nitrogen management strategy for winter wheat: Maximizing yields, minimizing environmental impact in an over-fertilization context. Field Crops Research, 116(1–2), 140–146.

    Article  Google Scholar 

  12. Cui, Z., Zhang, F., Chen, X., Miao, Y., Li, J., Shi, L., et al. (2008). On-farm evaluation of an in-season nitrogen management strategy based on soil Nmin test. Field Crops Research, 105(1–2), 48–55.

    Article  Google Scholar 

  13. Datt, B. (1999). Visible/near infrared reflectance and chlorophyll content in Eucalyptus leaves. International Journal of Remote Sensing, 20(14), 2741–2759.

    Article  Google Scholar 

  14. Daughtry, C., Walthall, C., Kim, M., De Colstoun, E. B., & McMurtrey, J. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74(2), 229–239.

    Article  Google Scholar 

  15. Eitel, J., Keefe, R., Long, D., Davis, A., & Vierling, L. A. (2010). Active ground optical remote sensing for improved monitoring of seedling stress in nurseries. Sensors, 10(4), 2843–2850.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Eitel, J., Long, D., Gessler, P., & Smith, A. (2007). Using in situ measurements to evaluate the new RapidEye™ satellite series for prediction of wheat nitrogen status. International Journal of Remote Sensing, 28(18), 4183–4190.

    Article  Google Scholar 

  17. Erdle, K., Mistele, B., & Schmidhalter, U. (2011). Comparison of active and passive spectral sensors in discriminating biomass parameters and nitrogen status in wheat cultivars. Field Crops Research, 124(1), 74–84.

    Article  Google Scholar 

  18. Gitelson, A. A. (2003). Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophysical Research Letters, 30(5), 1248. doi:10.1029/2002GL016450.

    Article  Google Scholar 

  19. Gitelson, A. A. (2004). Wide dynamic range vegetation index for remote quantification of biophysical characteristics of vegetation. Journal of Plant Physiology, 161(2), 165–173.

    CAS  Article  PubMed  Google Scholar 

  20. Gitelson, A. A., Kaufman, Y. J., & Merzlyak, M. N. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58(3), 289–298.

    Article  Google Scholar 

  21. Gitelson, A. A., & Merzlyak, M. N. (1994). Quantitative estimation of chlorophyll using reflectance spectra: Experiments with autumn chestnut and maple leaves. Journal of Photochemistry and Photobiology B: Biology, 22, 247–252.

    CAS  Article  Google Scholar 

  22. Gitelson, A. A., Vinã, A. S., Ciganda, V. N., & Rundquist, D. C. (2005). Remote estimation of canopy chlorophyll content in crops. Geophysical Research Letters. doi:10.1029/2005GL022688.

    Google Scholar 

  23. Guo, J. H., Liu, X. J., Zhang, Y., Shen, J. L., Han, W. X., Zhang, W. F., et al. (2010). Significant acidification in major Chinese croplands. Science, 327(5968), 1008–1010.

    CAS  Article  PubMed  Google Scholar 

  24. Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment, 90(3), 337–352.

    Article  Google Scholar 

  25. Haboudane, D., Miller, J. R., Tremblay, N., Zarco-Tejada, P. J., & Dextraze, L. (2002). Integrated narrow-band vegetation indices for prediction of crop chlorophyll content for application to precision agriculture. Remote Sensing of Environment, 81(2), 416–426.

    Article  Google Scholar 

  26. Holland, K., Lamb, D., & Schepers, J. (2012). Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1793–1802.

    Article  Google Scholar 

  27. Holland, K., & Schepers, J. (2010). Derivation of a variable rate nitrogen application model for in-season fertilization of corn. Agronomy Journal, 102(5), 1415–1424.

    Article  Google Scholar 

  28. Holland, K. H., & Schepers, J. S. (2013). Use of a virtual-reference concept to interpret active crop canopy sensor data. Precision Agriculutre, 14, 71–85.

    Article  Google Scholar 

  29. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25(3), 295–309.

    Article  Google Scholar 

  30. Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wave-length combination: Impact of seed rate, variety and growth stage. In E. J. V. Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture’09. (pp. 23–30). Wageningen: Wageningen Academic Publishers.

    Google Scholar 

  31. Jiang, A., Huang, W., Zhao, C., Liu, K., Liu, L., & Wang, J. (2007). Effects of variable nitrogen application based on characteristics of canopy light reflectance in wheat. Scientia Agricultura Sinica, 40(9), 1907–1913. (In Chinese with English abstract).

    CAS  Google Scholar 

  32. Ju, X. T., Xing, G. X., Chen, X. P., Zhang, S. L., Zhang, L. J., Liu, X. J., et al. (2009). Reducing environmental risk by improving N management in intensive Chinese agricultural systems. Proceedings of the National Academy of Sciences USA, 106(9), 3041–3046.

    CAS  Article  Google Scholar 

  33. Justice, C. O., Vermote, E., Townshend, J. R. G., DeFries, R., Roy, D. P., Hall, D. K., et al. (1998). The moderate resolution imaging spectroradiometer (MODIS): Land remote sensing for global change research. IEEE Transactions on Geoscience and Remote Sensing, 36(4), 1228–1249.

    Article  Google Scholar 

  34. Le Maire, G., Francois, C., & Dufrene, E. (2004). Towards universal broad leaf chlorophyll indices using PROSPECT simulated database and hyperspectral reflectance measurements. Remote Sensing of Environment, 89(1), 1–28.

    Article  Google Scholar 

  35. Li, F., Miao, Y., Chen, X., Zhang, H., Jia, L., & Bareth, G. (2010). Estimating winter wheat biomass and nitrogen status using an active crop sensor. Intelligent Automation and Soft Computing, 16(6), 1221–1230.

    Google Scholar 

  36. Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen use efficiency for winter wheat. Soil Science Society of America Journal, 73(5), 1566–1574.

    CAS  Article  Google Scholar 

  37. Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., et al. (2013). Enhanced nitrogen deposition over China. Nature, 494, 459–462.

    CAS  Article  PubMed  Google Scholar 

  38. Lukina, E. V., Freeman, K. W., Wynn, K. J., Thomason, W. E., Mullen, R. W., Stone, M. L., et al. (2001). Nitrogen fertilization optimization algorithm based on in-season estimates of yield and plant nitrogen uptake. Journal of Plant Nutrition, 24(6), 885–898.

    CAS  Article  Google Scholar 

  39. Meng, Q., Sun, Q., Chen, X., Cui, Z., Yue, S., Zhang, F., et al. (2012). Alternative cropping systems for sustainable water and nitrogen use in the North China Plain. Agriculture, Ecosystems & Environment, 146(1), 93–102.

    Article  Google Scholar 

  40. Miao, Y., Stewart, B. A., & Zhang, F. (2011). Long-term experiments for sustainable nutrient management in China. A review. Agronomy for Sustainable Development, 31(2), 397–414.

    Article  Google Scholar 

  41. Qi, J., Chehbouni, A., Huete, A., Kerr, Y., & Sorooshian, S. (1994). A modified soil adjusted vegetation index. Remote Sensing of Environment, 48(2), 119–126.

    Article  Google Scholar 

  42. Raper, T. B., Varco, J. J., & Hubbard, K. J. (2013). Canopy-based normalized difference vegetation index sensors for monitoring cotton nitrogen status. Agronomy Journal, 105(5), 1345–1354.

    CAS  Article  Google Scholar 

  43. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93(1), 131–138.

    Article  Google Scholar 

  44. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94(4), 815–820.

    Article  Google Scholar 

  45. Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55(2), 95–107.

    Article  Google Scholar 

  46. Roujean, J. L., & Breon, F. M. (1995). Estimating PAR absorbed by vegetation from bidirectional reflectance measurements. Remote Sensing of Environment, 51(3), 375–384.

    Article  Google Scholar 

  47. Shiratsuchi, L., Ferguson, R., Shanahan, J., Adamchuk, V., Rundquist, D., Marx, D., et al. (2011). Water and nitrogen effects on active canopy sensor vegetation indices. Agronomy Journal, 103(6), 1815–1826.

    Article  Google Scholar 

  48. Sripada, R. P., Heiniger, R. W., White, J. G., & Meijer, A. D. (2006). Aerial color infrared photography for determining early in-season nitrogen requirements in corn. Agronomy Journal, 98(4), 968–977.

    Article  Google Scholar 

  49. Thomason, W. E., Phillips, S. B., Davis, P. H., Warren, J. G., Alley, M. M., & Reiter, M. S. (2011). Variable nitrogen rate determination from plant spectral reflectance in soft red winter wheat. Precision Agriculture, 12(5), 666–681.

    Article  Google Scholar 

  50. Tucker, C. J. (1979). Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8(2), 127–150.

    Article  Google Scholar 

  51. Wang, J., Wang, E., Yang, X., Zhang, F., & Yin, H. (2012). Increased yield potential of wheat-maize cropping system in the North China Plain by climate change adaptation. Climatic Change, 113(3–4), 825–840.

    Article  Google Scholar 

  52. Yao, Y., Miao, Y., Cao, Q., Wang, H., Gnyp, M. L., Bareth, G., et al. (2014). In-season estimation of rice nitrogen status with an active crop canopy sensor. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(11), 4403–4413.

    Article  Google Scholar 

  53. Yao, Y., Miao, Y., Huang, S., Gao, L., Ma, X., Zhao, G., et al. (2012). Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development, 32(4), 925–933.

    Article  Google Scholar 

  54. Yue, X., Hu, Y., Zhang, H., & Schmidhalter, U. (2015). Green Window approach for improving nitrogen management by farmers in small-scale wheat fields. The Journal of Agricultural Science, 153, 446–454.

    Article  Google Scholar 

  55. Yue, S., Meng, Q., Zhao, R., Ye, Y., Zhang, F., Cui, Z., et al. (2012). Change in nitrogen requirement with increasing grain yield for winter wheat. Agronomy Journal, 104(6), 1687–1693.

    Article  Google Scholar 

  56. Zarco-Tejada, P. J., Miller, J., Morales, A., Berjón, A., & Agüera, J. (2004). Hyperspectral indices and model simulation for chlorophyll estimation in open-canopy tree crops. Remote Sensing of Environment, 90(4), 463–476.

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Basic Research Program (2015CB150405), The Innovative Group Grant of Natural Science Foundation of China (31421092) and the Special Fund for Agriculture Profession (201103003).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Yuxin Miao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Cao, Q., Miao, Y., Li, F. et al. Developing a new Crop Circle active canopy sensor-based precision nitrogen management strategy for winter wheat in North China Plain. Precision Agric 18, 2–18 (2017). https://doi.org/10.1007/s11119-016-9456-7

Download citation

Keywords

  • Precision agriculture
  • Crop Circle ACS 470 sensor
  • GreenSeeker sensor
  • In-season nitrogen management
  • Nitrogen use efficiency
  • Nitrogen recommendation algorithm