Analytical models integrated with satellite images for optimized pest management


The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interface to aid the end-user to select location and define an arbitrary perimeter for protection. The system provides coordinates of drop points for the controlled release devices which can be delivered using drone technology, e.g. unmanned air vehicles. In this work, we present the first proof of concept of this technology. A vast number of pest management applications can benefit from this work, including prevention against vector-borne diseases as well as protection of large agriculture fields.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7


  1. Alonso, P. L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., et al. (2011). A research agenda to underpin malaria eradication. PLoS Medicine, 8(1), e1000406.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Bratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.

    Article  Google Scholar 

  3. Chenghai, Y., Everitt, J. H., Du, B., Luo, Q., & Chanussot, J. (2013). Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture. Proceedings of the IEEE, 101(3), 582–592.

    Article  Google Scholar 

  4. Elman, N. M. (2013). Sustained release delivery devices, US patent 20140230313 A1.

  5. Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas—phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.

    CAS  Article  Google Scholar 

  6. Herring, D. (2001). Precision farming: Feature articles. Accessed, January 1, 2016.

  7. Jenkins, H. (2008). Chemical thermodynamics at a glance., Clausius-Clapeyron equation Oxford: Blackwell Publishing Ltd.

    Book  Google Scholar 

  8. Perkins, A., Scott, T. W., Le Menach, A., & Smith, D. L. (2013). Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Computational Biology, 9(12), e1003327.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Persson, P. O. (2004). Mesh generation for implicit geometries. Ph.D. thesis, Department of Mathematics, MIT.

  10. Persson, P. O., & Strang, G. (2014). A simple mesh generator in MATLAB. SIAM Review, 46(2), 329–334.

    Article  Google Scholar 

  11. Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13(4), 517–523.

    Article  Google Scholar 

  12. Schleier, J. J, 3rd, & Peterson, R. K. (2014). The mosquito ultra-low volume dispersion model for estimating environmental concentrations of insecticides used for adult mosquito management. Journal of the American Mosquito Control Association, 30(3), 223–227.

    Article  PubMed  Google Scholar 

  13. Smith, D. L., Perkins, A. T., Reiner, R. C, Jr, Barker, C. M., Niu, T., et al. (2014). Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108(4), 185–197.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693–712.

    CAS  Article  Google Scholar 

Download references


This research work was partially supported by the following organizations: the US Army Research Office (contract: W911NF-07-D-0004) and the Department of Defense Deployed Warfighter Protection Program (contract: W911QY-12-1-0005) via the Institute for Soldier Nanotechnologies (ISN) at MIT.

Author information



Corresponding author

Correspondence to Noel M. Elman.

Ethics declarations

Conflict of interest

The authors declare that they have not conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bright, L.Z., Handley, M., Chien, I. et al. Analytical models integrated with satellite images for optimized pest management. Precision Agric 17, 628–636 (2016).

Download citation


  • Pest management
  • Satellite images
  • UAV
  • Drones
  • Controlled release devices
  • Vector-borne diseases