Precision Agriculture

, Volume 17, Issue 5, pp 628–636 | Cite as

Analytical models integrated with satellite images for optimized pest management

  • L. Zack Bright
  • Michael Handley
  • Isabel Chien
  • Sebastian Curi
  • L. Anders Brownworth
  • Sebastian D’hers
  • Ulrich R. Bernier
  • Pablo Gurman
  • Noel M. Elman
Brief Communication
  • 552 Downloads

Abstract

The global field protection (GFP) was developed to protect and optimize pest management resources integrating satellite images for precise field demarcation with physical models of controlled release devices of pesticides to protect large fields. The GFP was implemented using a graphical user interface to aid the end-user to select location and define an arbitrary perimeter for protection. The system provides coordinates of drop points for the controlled release devices which can be delivered using drone technology, e.g. unmanned air vehicles. In this work, we present the first proof of concept of this technology. A vast number of pest management applications can benefit from this work, including prevention against vector-borne diseases as well as protection of large agriculture fields.

Keywords

Pest management Satellite images UAV Drones Controlled release devices Vector-borne diseases 

References

  1. Alonso, P. L., Brown, G., Arevalo-Herrera, M., Binka, F., Chitnis, C., Collins, F., et al. (2011). A research agenda to underpin malaria eradication. PLoS Medicine, 8(1), e1000406.CrossRefPubMedPubMedCentralGoogle Scholar
  2. Bratney, A., Whelan, B., Ancev, T., & Bouma, J. (2005). Future directions of precision agriculture. Precision Agriculture, 6(1), 7–23.CrossRefGoogle Scholar
  3. Chenghai, Y., Everitt, J. H., Du, B., Luo, Q., & Chanussot, J. (2013). Using high-resolution airborne and satellite imagery to assess crop growth and yield variability for precision agriculture. Proceedings of the IEEE, 101(3), 582–592.CrossRefGoogle Scholar
  4. Elman, N. M. (2013). Sustained release delivery devices, US patent 20140230313 A1.Google Scholar
  5. Fuller, E. N., Schettler, P. D., & Giddings, J. C. (1966). New method for prediction of binary gas—phase diffusion coefficients. Industrial and Engineering Chemistry, 58(5), 18–27.CrossRefGoogle Scholar
  6. Herring, D. (2001). Precision farming: Feature articles. http://earthobservatory.nasa.gov/Features/PrecisionFarming/. Accessed, January 1, 2016.
  7. Jenkins, H. (2008). Chemical thermodynamics at a glance., Clausius-Clapeyron equation Oxford: Blackwell Publishing Ltd.CrossRefGoogle Scholar
  8. Perkins, A., Scott, T. W., Le Menach, A., & Smith, D. L. (2013). Heterogeneity, mixing, and the spatial scales of mosquito-borne pathogen transmission. PLoS Computational Biology, 9(12), e1003327.CrossRefPubMedPubMedCentralGoogle Scholar
  9. Persson, P. O. (2004). Mesh generation for implicit geometries. Ph.D. thesis, Department of Mathematics, MIT.Google Scholar
  10. Persson, P. O., & Strang, G. (2014). A simple mesh generator in MATLAB. SIAM Review, 46(2), 329–334.CrossRefGoogle Scholar
  11. Primicerio, J., Di Gennaro, S. F., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture, 13(4), 517–523.CrossRefGoogle Scholar
  12. Schleier, J. J, 3rd, & Peterson, R. K. (2014). The mosquito ultra-low volume dispersion model for estimating environmental concentrations of insecticides used for adult mosquito management. Journal of the American Mosquito Control Association, 30(3), 223–227.CrossRefPubMedGoogle Scholar
  13. Smith, D. L., Perkins, A. T., Reiner, R. C, Jr, Barker, C. M., Niu, T., et al. (2014). Recasting the theory of mosquito-borne pathogen transmission dynamics and control. Transactions of the Royal Society of Tropical Medicine and Hygiene, 108(4), 185–197.CrossRefPubMedPubMedCentralGoogle Scholar
  14. Zhang, C., & Kovacs, J. M. (2012). The application of small unmanned aerial systems for precision agriculture: a review. Precision Agriculture, 13(6), 693–712.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • L. Zack Bright
    • 1
  • Michael Handley
    • 1
  • Isabel Chien
    • 1
  • Sebastian Curi
    • 2
  • L. Anders Brownworth
    • 1
  • Sebastian D’hers
    • 2
  • Ulrich R. Bernier
    • 3
  • Pablo Gurman
    • 4
  • Noel M. Elman
    • 1
  1. 1.Institute for Soldier NanotechnologiesMassachusetts Institute of TechnologyCambridgeUSA
  2. 2.Department of Mechanical EngineeringInstituto Tecnológico de Buenos Aires (ITBA)Buenos AiresArgentina
  3. 3.United States Department of Agriculture-Agricultural Research ServiceCenter for Medical, Agricultural, and Veterinary EntomologyGainesvilleUSA
  4. 4.Department of Materials ScienceUniversity of Texas at DallasRichardsonUSA

Personalised recommendations