Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions


Knowledge and monitoring of the grapevine phenology during the season are important requirements for characterization of productive regions, climate change studies and planning of various production activities at the vine field scale. This work aims at studying the spatial variability of grapevine phenology at the within field scale. It was conducted on two fields, one of cv Cabernet Sauvignon of 1.56 ha and the other of cv Chardonnay of 1.66 ha, both located in Maule Valley, Chile. Within each vine field, a regular sampling grid was designed, to carry out weekly measurements of phenology and maturation. The main results show that there is a significant spatial variability in the phenological development and maturation at the within field scale for both fields. This variability is spatially organised and temporally stable from the beginning of the season (post-budburst) to harvest and over the years. A cluster analysis allowed us to define two clearly contrasted zones in terms of phenology and maturation in both fields, explained by the microclimate. The magnitude of difference between zones varied from 4 to 9 days depending on phenological stages and from 5 to 43 days for maturation. These differences are similar and comparable to that observed at larger scales or under scenarios of climate change. These results highlight the necessity to better take into account this variability to improve sampling and to base decisions of production activities (spraying, harvest, pruning, etc.) application on more relevant information. Further investigations should determine the environmental factors that determine the observed spatial variability.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11



Coefficient of variation


Degree of spatial dependence

ET0 :

Reference evapotranspiration




Growing degree-days


Total soluble solids


TSS measured at days of the harvest




Mean correlation distance




Maturity index





Pre-Ha 1:

TSS measured at 25 days before harvest

Pre-Ha 2:

TSS measured at 12 days before harvest


Units of phenological scale

Ps :

Current phenological stage


Range of variation


Standard deviation


Temporal stability of the spatial variability




Kendall coefficient of concordance


  1. Acevedo-Opazo, C., Ortega-Farías, S., Hidalgo, C., Moreno, Y., & Córdova, F. (2005). Effects of different levels of water application in post-setting and post-veraison on wine quality cv. Cabernet Sauvignon. Agricultura Técnica, 65(4), 397–410.

    Google Scholar 

  2. Acevedo-Opazo, C., Ortega-Farias, S., & Fuentes, S. (2010a). Effects of grapevine (Vitis vinifera L.) water status on water consumption, vegetative growth and grape quality: An irrigation scheduling application to achieve regulated deficit irrigation. Agricultural Water Management, 97(7), 956–964.

    Article  Google Scholar 

  3. Acevedo-Opazo, C., Tisseyre, B., Taylor, J. A., Ojeda, H., & Guillaume, S. (2010b). A model for the spatial prediction of water status in vines (Vitis vinifera L.) using high resolution ancillary information. Precision Agriculture, 11(4), 358–378.

    Article  Google Scholar 

  4. Acevedo-Opazo, C., Valdés-Gómez, H., Taylor, J. A., Avalo, A., Verdugo-Vásquez, N., Araya, M., et al. (2013). Assessment of an empirical spatial prediction model of vine water status for irrigation management in a grapevine field. Agricultural Water Management, 124, 58–68.

    Article  Google Scholar 

  5. Allen, R. G., Pruitt, W. O., Wright, J. L., Howell, T. A., Ventura, F., Snyder, R., et al. (2006). A recommendation on standardized surface resistance for hourly calculation of reference ETo by the FAO56 Penman-Monteith method. Agricultural Water Management, 81(1–2), 1–22.

    Article  Google Scholar 

  6. Baluja, J., Tardaguila, J., Ayestaran, B., & Diago, M. P. (2013). Spatial variability of grape composition in a Tempranillo (Vitis vinifera L.) vineyard over a 3-year survey. Precision Agriculture, 14(1), 40–58.

    Article  Google Scholar 

  7. Barbeau, G., Morlat, R., Asselin, C., Jacquet, A., & Pinard, C. (1998). Behaviour of the Cabernet Franc grapevine variety in varios “Terroirs” of the Loire Valley. Influence of the precocity on the composition of the harvested grapes for a normal climatic year (Example of the year 1988). Journal International Des Sciences de La Vigne et Du Vin, 32(2), 69–81.

    Google Scholar 

  8. Bonnefoy, C., Quénol, H., Bonnardot, V., Barbeau, G., Madelin, M., Planchon, O., et al. (2012). Temporal and spatial analyses of temperature in a French wine-producing area: The Loire Valley. International Journal of Climatology, 33(8), 1849–1862.

    Article  Google Scholar 

  9. Bramley, R. G. V. (2005). Understanding variability in winegrape production systems 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11(1), 33–42.

    Article  Google Scholar 

  10. Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10(1), 32–45.

    Article  Google Scholar 

  11. Bramley, R. G. V., Evans, K. J., Dunne, K. J., & Gobbett, D. L. (2011a). Spatial variation in response to “reduced input” spray programs for powdery mildew and botrytis identified through whole-of-block experimentation. Australian Journal of Grape and Wine Research, 17(3), 341–350.

    CAS  Article  Google Scholar 

  12. Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011b). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17(2), 217–229.

    CAS  Article  Google Scholar 

  13. Caffarra, A., & Eccel, E. (2010). Increasing the robustness of phenological models for Vitis vinifera cv. Chardonnay. International Journal of Biometeorology, 54(3), 255–267.

    Article  PubMed  Google Scholar 

  14. Caffarra, A., & Eccel, E. (2011). Projecting the impacts of climate change on the phenology of grapevine in a mountain area. Australian Journal of Grape and Wine Research, 17(1), 52–61.

    Article  Google Scholar 

  15. Cambardella, C. A., Moorman, T. B., Parkin, T. B., Karlen, D. L., Novak, J. M., Turco, R. F., et al. (1994). Field-scale variability of soil properties in central iowa soils. Soil Science Society of America Journal, 58(5), 1501–1511.

    Article  Google Scholar 

  16. Campbell, P., Bendek, C., & Latorre, B. A. (2007). Riesgo de oídio (Erysiphe necator) de la vid en relación con el desarrollo de los racimos. Ciencia E Investigación Agraria, 34(1), 5–11.

    Article  Google Scholar 

  17. Chuine, I., García de Cortázar-Atauri, I., Kramer, K., & Hänninen, H. (2013). Plant Development Models. In M. D. Schwartz (Ed.), Phenology: An integrative environmental science (pp. 275–293). Dordrecht: Springer.

    Google Scholar 

  18. Coombe, B. G. (1995). Adoption of a system for identifying grapevine growth stages. Australian Journal of Grape and Wine Research, 1(2), 104–110.

    Article  Google Scholar 

  19. Dunn, G. M., & Martin, S. R. (2000). Do temperature conditions at budburst affect flower number in Vitis vinifera L. cv. Cabernet Sauvignon? Australian Journal of Grape and Wine Research, 6(2), 116–124.

    Article  Google Scholar 

  20. Flores, L. (2005). Variabilidad Espacial del Rendimiento de Uva y Calidad del Mosto en Cuarteles de Vid cv. Cabernet Sauvignon y Chardonnay en Respuesta a la Variabilidad de Algunas Propiedades del Suelo. Agricultura Técnica, 65(2), 210–220.

    Article  Google Scholar 

  21. Friend, A. P., Trought, M. C. T., Stushnoff, C., & Wells, G. H. (2011). Effect of delaying budburst on shoot development and yield of Vitis vinifera L. Chardonnay, “Mendoza” after a spring freeze event. Australian Journal of Grape and Wine Research, 17(3), 378–382.

    Article  Google Scholar 

  22. García de Cortázar-Atauri, I., Brisson, N., & Gaudillere, J. P. (2009). Performance of several models for predicting budburst date of grapevine (Vitis vinifera L.). International Journal of Biometeorology, 53(4), 317–326.

    Article  PubMed  Google Scholar 

  23. Girona, J., Marsal, J., Mata, M., Del Campo, J., & Basile, B. (2009). Phenological sensitivity of berry growth and composition of Tempranillo grapevines (Vitis vinifera L.) to water stress. Australian Journal of Grape and Wine Research, 15, 268–277.

    CAS  Article  Google Scholar 

  24. Gladstones, J. (1992). Viticulture and environment. Adelaide: Winetitles.

    Google Scholar 

  25. Han, S., Evans, R. G., Schneider, S. M., & Rawlins, S. L. (1996). Spatial variability of soil properties on two center-pivot irrigated fields. In Precision Agriculture (pp. 97–106). American Society of Agronomy, Crop Science Society of America, Soil Science Society of America.

  26. Irimia, L. M., Patriche, C. V., Bucur, G. M., Quénol, H., & Cotea, V. V. (2015). Spatial distribution of grapes sugar content and its correlations with climate characteristics and climate suitability in the Huşi (Romania) wine growing region. Notulae Botanicae Horti Agrobotanici. doi:10.15835/nbha4319673.

    Google Scholar 

  27. Jones, G. V., & Davis, R. E. (2000). Climate influences on grapevine phenology, grape composition, and wine production and quality for Bordeaux, France. American Journal of Enology and Viticulture, 51(3), 249–261.

    Google Scholar 

  28. Jorquera-Fontena, E., & Orrego-Verdugo, R. (2010). Impact of global warming on the phenology of a variety of grapevine grown in southern Chile. Agrociencia, 44(4), 427–435.

    Google Scholar 

  29. King, P. D., Smart, R. E., & McClellan, D. J. (2014). Within-vineyard variability in vine vegetative growth, yield, and fruit and wine composition of Cabernet Sauvignon in Hawke’s Bay, New Zealand. Australian Journal of Grape and Wine Research, 20, 234–246.

    CAS  Article  Google Scholar 

  30. Kunz, T., & Tatham, B. (2012). Localization in wireless sensor networks and anchor placement. Journal of Sensor and Actuator Networks, 1(1), 36–58.

    Article  Google Scholar 

  31. Marta, A., Grifoni, D., Mancini, M., Storchi, P., Zipoli, G., & Orlandini, S. (2010). Analysis of the relationships between climate variability and grapevine phenology in the Nobile di Montepulciano wine production area. The Journal of Agricultural Science, 148(06), 657–666.

    Article  Google Scholar 

  32. Matese, A., Toscano, P., Di Gennaro, S. F., Genesio, L., Vaccari, F. P., Primicerio, J., et al. (2015). Intercomparison of UAV, aircraft and satellite remote sensing platforms for precision viticulture. Remote Sensing, 7, 2971–2990.

    Article  Google Scholar 

  33. Moriondo, M., Bindi, M., Fagarazzi, C., Ferrise, R., & Trombi, G. (2010). Framework for high-resolution climate change impact assessment on grapevines at a regional scale. Regional Environmental Change, 11(3), 553–567.

    Article  Google Scholar 

  34. Mullins, M. G., Bouquet, A., & Williams, L. E. (1992). Biology of the grapevine. New York: Cambridge University Press.

    Google Scholar 

  35. Nendel, C. (2010). Grapevine bud break prediction for cool winter climates. International Journal of Biometeorology, 54(3), 231–241.

    Article  PubMed  Google Scholar 

  36. Ojeda, H., Andary, C., Kraeva, E., Carbonneau, A., & Deloire, A. (2002). Influence of pre-and postveraison water deficit on synthesis and concentration of skin phenolic compounds during berry growth of Vitis vinifera cv. Shiraz. American Journal of Enology and Viticulture, 53(4), 261–267.

    CAS  Google Scholar 

  37. Ortega-Farías, S., Lozano, P., Moreno, Y., & León, L. (2002). Development of models for predicting phenology and evolution of madurity in cv. Cabernet Sauvignon and Chardonnay grapevines. Agricultura Técnica, 62(1), 27–37.

    Article  Google Scholar 

  38. Parker, A. K., García de Cortázar-Atauri, I., Van Leeuwen, C., & Chuine, I. (2011). General phenological model to characterise the timing of flowering and veraison of Vitis vinifera L. Australian Journal of Grape and Wine Research, 17(2), 206–216.

    Article  Google Scholar 

  39. Parker, A. K., Hofmann, R. W., van Leeuwen, C., McLachlan, A. R. G., & Trought, M. C. T. (2014). Leaf area to fruit mass ratio determines the time of veraison in Sauvignon Blanc and Pinot Noir grapevines. Australian Journal of Grape and Wine Research, 20(3), 422–431.

    CAS  Article  Google Scholar 

  40. Petrie, P. R., & Sadras, V. O. (2008). Advancement of grapevine maturity in Australia between 1993 and 2006: putative causes, magnitude of trends and viticultural consequences. Australian Journal of Grape and Wine Research, 14(1), 33–45.

    Article  Google Scholar 

  41. Primicerio, J., Matese, A., Di Gennaro, S. F., Albanese, L., Guidoni, S., & Gay, P. (2013). Development of an integrated, low-cost and open-source system for precision viticulture: From UAV to WSN. In EFITA-WCCA-CIGR Conference “Sustainable Agriculture through ICT Innovation” Turin, Italy (pp. 24–27).

  42. Quénol, H. (2013). Analyse du climat aux échelles locales dans le contexte du changement climatique. Revue Pollution Atmosphérique. Climat, santé, societé. Nº espécial climat - Juin.

  43. Quénol, H., & Bonnardot, V. (2014). A multi-scale climatic analysis of viticultural terroirs in the context of climate change: The “TERADCLIM” project. Spécial Laccave. Journal International des Sciences de la Vigne et du Vin, 25–34.

  44. Quénol, H., Grosset, M., Barbeau, G., Van Leeuwen, K., Hofmann, M., & Foss Miranda, C. (2014). Adapatation of viticulture to climate change: High resolution observations of adaptation scenarii for viticulture : The ADVICLIM European Project. Bulletin de l’OIV, 87, 395–406.

    Google Scholar 

  45. Sadras, V. O., & Petrie, P. R. (2012). Predicting the time course of grape ripening. Australian Journal of Grape and Wine Research, 18(1), 48–56.

    Article  Google Scholar 

  46. Saporta, G. (1990). Probabilité, analyse des données et statistique. Analyse des données et statistiques. Editions Technip (Vol. Ed. Techni).

  47. Soil Survey Staff. (1999). A basic system of soil classification for making and interpreting soil surveys second ed. Soil use and management (Vol. 17). Blackwell Publishing Ltd.

  48. Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12, 762–773.

    Article  Google Scholar 

  49. Tesic, D., Woolley, D. J., Hewett, E. W., & Martin, D. J. (2001). Environmental effects on cv Cabernet Sauvignon (Vitis vinifera L.) grown in Hawke’ s Bay, New Zealand. 1. Phenology and characterisation of viticultural environments. Australian Journal of Grape and Wine Research, 8(1), 15–26.

    Article  Google Scholar 

  50. Thornley, J. H. M., & Johnson, I. R. (1990). Plant and crop modelling. New York: Oxford University Press.

    Google Scholar 

  51. Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Whithin-field temporal stability of some parameters in viticulture: Potential toward a site specific management. Journal International Des Sciences de La Vigne et Du Vin, 42(1), 27–39.

    Google Scholar 

  52. Trought, M. C. T., & Bramley, R. G. V. (2011). Vineyard variability in Marlborough, New Zealand: Characterising spatial and temporal changes in fruit composition and juice quality in the vineyard. Australian Journal of Grape and Wine Research, 17(1), 79–89.

    Article  Google Scholar 

  53. Valdés-Gómez, H., Gary, C., Cartolaro, P., Lolas-Caneo, M., & Calonnec, A. (2011a). Powdery mildew development is positively influenced by grapevine vegetative growth induced by different soil management strategies. Crop Protection, 30(9), 1168–1177.

    Article  Google Scholar 

  54. Valdés-Gómez, H., Brisson, N., Acevedo-Opazo, C., Gary, C., & Ortega-Farías, S. (2011b). Modelling the effects of Niño and Niña events on water balance of grapevine (cv. Cabernet Sauvignon) in Central valley of Chile. Sixth international symposium on irrigation of horticultural crops. Acta Horticulturae, 889, 159–166.

    Article  Google Scholar 

  55. Webb, L. B., Whetton, P. H., & Barlow, E. W. R. (2007). Modelled impact of future climate change on the phenology of winegrapes in Australia. Australian Journal of Grape and Wine Research, 13, 165–175.

    Article  Google Scholar 

  56. Webster, R., & Oliver, M. A. (1992). Sample adequately to estimate variograms of soil properties. Journal of Soil Science, 43(1), 177–192.

    Article  Google Scholar 

  57. Webster, R., & Oliver, M. (2001). Geostatistics for environmental scientists. Statistics in practice. Chichester: Wiley.

    Google Scholar 

  58. Winkler, A., Cook, J., Kliewer, W., & Lider, L. (1974). General Viticulture (2nd ed.). California: University of California.

    Google Scholar 

  59. Wu, C., Wu, J., Luo, Y., Zhang, L., & DeGloria, S. (2008). Spatial prediction of soil organic matter content using cokriging with remotely sensed data. Soil Science Society of America Journal, 73(4), 1202–1208.

    Article  Google Scholar 

Download references


The authors of this paper wish to thank FONDECYT Project 11110137, National CONICYT Doctoral Fellowship 2013 N°21130504 and PIEI Program of Agricultural Adaptation to Climate Change funded by the Universidad de Talca. Also, the authors would like to thank the support of the Chilean project CD-UBB 1203.

Author information



Corresponding author

Correspondence to C. Acevedo-Opazo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Verdugo-Vásquez, N., Acevedo-Opazo, C., Valdés-Gómez, H. et al. Spatial variability of phenology in two irrigated grapevine cultivar growing under semi-arid conditions. Precision Agric 17, 218–245 (2016).

Download citation


  • Vitis vinifera
  • Berry maturity
  • Within field variability
  • Temporal variability
  • Management zones
  • Climate change