Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing,
65, 2–16.
Article
Google Scholar
Carranza, P., Saavedra, M., & Gacría-Torres, L. (1995). Ridolfia segetum Moris. competition with sunflower (Helianthus annuus L.). Weed Research,
35, 369–375.
Article
Google Scholar
Castro-Tendero, A. J., & García-Torres, L. (1995). SEMAGI—an expert system for weed control decision making in sunflowers. Crop Protection,
14, 543–548.
Article
Google Scholar
Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment,
37, 35–46.
Article
Google Scholar
Czapar, G. F., Curry, M. P., & Wax, L. M. (1997). Grower acceptance of economic thresholds for weed management in Illinois. Weed Technology,
11, 828–831.
Google Scholar
De Castro, A. I., Jurado-Expósito, M., Peña-Barragán, J. M., & López-Granados, F. (2012). Airborne multi-spectral imagery for mapping cruciferous weeds in cereal and legume crops. Precision Agriculture,
13, 302–321.
Article
Google Scholar
De Castro, A. I., López-Granados, F., Peña-Barragán, J. M., & Jurado-Expósito, M. (2013). Broad-scale cruciferous weed patches classification in winter wheat using QuickBird imagery for in-season site-specific control. Precision Agriculture,
14, 392–417.
Article
Google Scholar
FAO (2015). http://faostat3.fao.org/faostat-gateway/go/to/home/E. Accessed 16 June 2014.
García-Torres, L., López-Granados, F., & Castejón-Muñoz, M. (1994). Preemergence herbicides for the control of broomrape (Orobanche cernua Loefl.) in sunflower (Helianthus annuus L.). Weed Research,
34, 395–402.
Article
Google Scholar
Gibson, K. D., Dirks, R., Medlin, C. R., & Johnston, L. (2004). Detection of weed species in soybean using multispectral digital images. Weed Technology,
18, 742–749.
Article
Google Scholar
Gómez-Candón, D., De Castro, A. I., & López-Granados, F. (2014). Assessing the accuracy of mosaics from unmanned aerial vehicle (UAV) imagery for precision agriculture purposes. Precision Agriculture,
15, 44–56.
Article
Google Scholar
Gutiérrez-Peña, P. A., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Gómez-Casero, M. T., & Hervás-Martínez, C. (2008). Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture,
60, 122–132.
Article
Google Scholar
Haarbrink, R. B., & Eisenbeiss, H. (2008). Accurate DSM production from unmanned helicopter systems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences,
XXXVII(Part B1), 1259–1264.
Google Scholar
Horizon (2020) http://ec.europa.eu/programmes/horizon2020/. Accessed 16 June 2015.
Hunt, E. R, Jr., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T., & McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing,
2, 290–305.
Article
Google Scholar
Jurado-Expósito, M., López-Granados, F., García-Torres, L., García-Ferrer, A., Sánchez de la Orden, M., & Atenciano, S. (2003). Multi-species weed spatial variability and site-specific management maps in cultivated sunflower. Weed Science,
51, 319–328.
Article
Google Scholar
Jurado-Expósito, M., López-Granados, F., González-Andújar, J. L., & García-Torres, L. (2005). Characterizing population rate of Convolvulus arvensis in wheat-sunflower no-tillage systems. Crop Science,
45, 2106–2112.
Article
Google Scholar
Lambers, K., Eisenbeiss, H., Sauerbier, M., Kupferschmidt, D., Gaisecker, Th, Sotoodeh, S., et al. (2007). Combining photogrammetry and laser scanning for the recording andmodelling of the late intermediate period site of Pinchango Alto, Palpa, Peru. Journal of Archaeological Science,
34, 1702–1712.
Article
Google Scholar
Li, Ch-ch, Zhang, G.-S., Lei, T.-J., & Gong, A.-D. (2011). Quick image-processing method of UAV without control points data in earthquake disaster area. Transactions Nonferrous Metals Society of China,
21, s523–s528.
Article
Google Scholar
Longchamps, L., Panneton, B., Simard, M. J., & Leroux, G. D. (2014). An imagery-based weed cover threshold established using expert knowledge. Weed Science,
62, 177–185.
CAS
Article
Google Scholar
López-Granados, F. (2011). Weed detection for site-specific weed management: Mapping and real-time approaches. Weed Research,
51, 1–11.
Article
Google Scholar
MAGRAMA (2015). Ministerio Agricultura, Alimentación y Medioambiente. http://www.magrama.gob.es/es/estadistica/temas/default.aspx. Accessed 16 June 2015 (in Spanish).
Meier, U. (2001). Growth stages of mono- and dicotyledonous plants. BB Monograph. Federal Biological Research Centre for Agriculture and Forestry. http://www.jki.bund.de/fileadmin/dam_uploads/_veroeff/bbch/BBCH-Skala_englisch.pdf. Accessed 16 June 2015.
Molinero-Ruiz, L., García-Carneros, A. B., Collado-Romero, M., Rarancius, S., Domínguez, J., & Melero-Vara, J. (2014). Pathogenic and molecular diversity in highly virulent populations of the parasitic weed Orobanche cumana (sunflower broomrape) from Europe. Weed Research,
54, 87–98.
Article
Google Scholar
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE, Man, and Cybernetics Society,
9, 62–66.
Article
Google Scholar
Peña, J. M., Torres-Sánchez, J., de Castro, A. I., Kelly, M., & López-Granados, F. (2013). Weed mapping in early-season maize fields using object-based analysis of unmanned aerial vehicle (UAV) images. PLoS One,
8, e77151.
Article
PubMed
PubMed Central
Google Scholar
Pérez-Ruiz, M., Gonzalez-de-Santos, P., Ribeiro, A., Fernandez-Quintanilla, C., Peruzzi, A., Vieri, M., et al. (2015). Highlights and preliminary results for autonomous crop protection. Computers and Electronics in Agriculture,
110, 150–161.
Article
Google Scholar
Rouse, J. W., Haas, R. H., Schell, J. A. & Deering, D. W. (1973). Monitoring vegetation systems in the Great Plains with ERTS. In: Proceedings of the Earth Resources Technology Satellite Symposium NASA SP-351, (vol 1, pp. 309–317). Washington, DC.
Swanton, C. J., Weaver, S., Cowan, P., Van Acker, R., Deen, W., & Shreshta, A. (1999). Weed thresholds: Theory and applicability. Journal of Crop Production,
2, 9–29.
Article
Google Scholar
Thomlinson, J. R., Bolstad, P. V., & Cohen, W. B. (1999). Coordinating methodologies for scaling landcover classification from site-specific to global: Steps toward validating global maps products. Remote Sensing of Environment,
70, 16–28.
Article
Google Scholar
Torres-Sánchez, J., López-Granados, F., de Castro, A. I., & Peña-Barragán, J. M. (2013). Configuration and specifications of an unmanned aerial vehicle (UAV) for early site specific weed management. PLoS One,
8, e58210.
Article
PubMed
PubMed Central
Google Scholar
Torres-Sánchez, J., López-Granados, F., & Peña-Barragán, J. M. (2015). An automatic object-based method for optimal thresholding in UAV images: Application for vegetation detection in herbaceous. Computers and Electronics in Agriculture,
114, 43–52.
Article
Google Scholar
Torres-Sánchez, J., Peña-Barragán, J. M., de Castro, A. I., & López-Granados, F. (2014). Multi-temporal mapping of the vegetation fraction in early-season wheat fields using images from UAV. Computers and Electronics in Agriculture,
103, 104–113.
Article
Google Scholar
Woebbecke, D. M., Meyer, G. E., Von Bargen, K., & Mortensen, D. A. (1995). Color indices for weed identification under various soil, residue, and lighting conditions. Transactions of the ASAE,
38(259–269), 28.
Google Scholar
Zhang, C., & Kovacs, J. (2012). The application of small unmanned aerial systems for precision agriculture: A review. Precision Agriculture,
13, 693–712.
CAS
Article
Google Scholar