Skip to main content

Variable rate nitrogen fertilizer response in wheat using remote sensing

Abstract

Nitrogen (N) fertilizer application can lead to increased crop yields but its use efficiency remains generally low which can cause environmental problems related to nitrate leaching as well as nitrous oxide emissions to the atmosphere. The objectives of this study were to: (i) to demonstrate that properly identified variable rates of N fertilizer lead to higher use efficiency and (ii) to evaluate the capability of high spectral resolution satellite to detect within-field crop N response using vegetation indices. This study evaluated three N fertilizer rates (30, 70, and 90 kg N ha−1) and their response on durum wheat yield across the field. Fertilizer rates were identified through the adoption of the SALUS crop model, in addition to a spatial and temporal analysis of observed wheat grain yield maps. Hand-held and high spectral resolution satellite remote sensing data were collected before and after a spring side dress fertilizer application with FieldSpec, HandHeld Pro® and RapidEye™, respectively. Twenty-four vegetation indices were compared to evaluate yield performance. Stable zones within the field were defined by analyzing the spatial stability of crop yield of the previous 5 years (Basso et al. in Eur J Agron 51: 5, 2013). The canopy chlorophyll content index (CCCI) discriminated crop N response with an overall accuracy of 71 %, which allowed assessment of the efficiency of the second N application in a spatial context across each management zone. The CCCI derived from remotely sensed images acquired before and after N fertilization proved useful in understanding the spatial response of crops to N fertilization. Spectral data collected with a handheld radiometer on 100 grid points were used to validate spectral data from remote sensing images in the same locations and to verify the efficacy of the correction algorithms of the raw data. This procedure was presented to demonstrate the accuracy of the satellite data when compared to the handheld data. Variable rate N increased nitrogen use efficiency with differences that can have significant implication to the N2O emissions, nitrate leaching, and farmer’s profit.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Analytical Spectral Devices, A. (2002). FieldSpec User’s guide, ASD Part#600000. Boulder CO: Rev. C.

    Google Scholar 

  2. Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35, 12.

    Article  Google Scholar 

  3. Basso, B., Cammarano, D., Fiorentino, C., & Ritchie, J. T. (2013). Wheat yield response to spatially variable nitrogen fertilizer in Mediterranean Environment. European Journal of Agronomy, 51, 5.

    Article  Google Scholar 

  4. Basso, B., Cammarano, D., Troccoli, A., Chen, D., & Ritchie, J. T. (2010). Long-term wheat response to nitrogen in a rainfed Mediterranean environment: Field data and simulation analysis. European Journal of Agronomy, 33(2), 132–138.

    Article  Google Scholar 

  5. Basso, B., Fiorentino, C., Cammarano, D., Cafiero, G., & Dardanelli, J. (2012). Analysis of rainfall distribution on spatial and temporal patterns of wheat yield in Mediterranean environment. European Journal of Agronomy, 41, 13.

    Article  Google Scholar 

  6. Basso, B., Ritchie, J., Cammarano, D., & Sartori, L. (2011). A strategic and tactical management approach to select optimal N fertilizer rates for wheat in a spatially variable field. European Journal of Agronomy, 35(4), 215–222.

    Article  Google Scholar 

  7. Basso, B., Ritchie, J. T., Grace, P. R., & Sartori, L. (2006). Simulation of tillage systems impact on soil biophysical properties using SALUS model. Italian Journal of Agronomy, 4, 11.

    Google Scholar 

  8. Blackmer, T. M., Schepers, J. S., Varvel, G. E., & Walter-Shea, E. A. (1996). Nitrogen deficiency detection using reflected shortwave radiation from irrigated corn canopies. Agronomy Journal, 88, 4.

    Google Scholar 

  9. Cammarano, D., Fitzgerald, G., Basso, B., & Grace, P. R. (2011a). Remote estimation of chlorophyll on two wheat cultivars in two rainfed environments. Crop and Pasture Science, 62, 6.

    Article  Google Scholar 

  10. Cammarano, D., Fritzgerald, G., Basso, B., Oleary, G., Grace, P. R., & Fiorentino, C. (2011b). Use of the canopy chlorophyl content index (CCCI) for remote estimation of wheat nitrogen content in rainfed environments. Agronomy Journal, 103(6), 1597–1603.

    CAS  Article  Google Scholar 

  11. Cammarano, D., Fritzgerald, G., Casa, R., & Basso, B. (2014). Assessing the robustness of vegetation indices to estimate wheat N in Mediterranean environments. Remote Sensing, 6, 2827–2844. doi:10.3390/rs6042827.

    Article  Google Scholar 

  12. Congalton, R. G. (1991). A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment, 37, 11.

    Article  Google Scholar 

  13. Daughtry, C. S. T., Walthall, C. L., Kim, M. S., de Colstoun, E. B., & McMurtrey, J. E, I. I. I. (2000). Estimating corn leaf chlorophyll concentration from leaf and canopy reflectance. Remote Sensing of Environment, 74, 10.

    Article  Google Scholar 

  14. Demetriades-Shah, T. H., Steven, M. D., & Clark, J. C. (1990). High resolution derivative spectra in remote sensing. Remote Sensing of Environment, 33, 9.

    Article  Google Scholar 

  15. Dzotsi, K. A., Basso, B., & Jones, J. W. (2013). Development, uncertainty and sensitivity analysis of the simple SALUS crop model in DSSAT. Ecological Modelling, 260, 62–76. doi:10.1016/j.ecolmodel.2013.03.017.

    Article  Google Scholar 

  16. Eitel, J. U. H., Long, D. S., Gessler, P. E., & Smith, A. M. S. (2007). Using in situ measurements to evaluate new RapidEye satellite series for prediction of wheat nitrogen status. Internationl Journal Remote Sensing, 28, 7.

    Google Scholar 

  17. FAO. (2008). Current world fertilizer trends and outlook to 2011/12. Rome: Food and Agriculture Organization.

    Google Scholar 

  18. Fitzgerald, G. J., Rodriguez, D., & O’Leary, G. (2010). Measuring and predicting canopy nitrogen concentration in wheat using a spectral index—the Canopy Chlorophyll Content Index (CCCI). Field Crop Research, 116, 6.

    Article  Google Scholar 

  19. Fitzgerald, G. J., et al. (2006). Spectral and thermal sensing for nitrogen and water status in rainfed and irrigated wheat environments. Precision Agriculture, 7, 15.

    Article  Google Scholar 

  20. Flowers, M. (2001). Remote sensing of winter wheat tiller density for early nitrogen application decisions. Agronomy Journal, 93, 6.

    Article  Google Scholar 

  21. Gitelson, A., Kaufman, Y., & Merzlyak, M. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 9.

    Article  Google Scholar 

  22. Gitelson, A. A., & Merzlyak, M. N. (1997). Remote estimation of chlorophyll content in higher crop leaves. International Journal of Remote Sensing, 18, 6.

    Article  Google Scholar 

  23. IFA. (2008). 76th IFA annual conference. In: I.F.A. Industry (Ed.), Vienna.

  24. Justes, E., Mary, B., Meynard, J. M., & Thelier-Huche, L. (1994). Determination of a critical nitrogen dilution curve for winter wheat crops. Annals of Botany, 74, 10.

    Article  Google Scholar 

  25. Labsphere. (1998). Reflectance characteristics of spectralon panels. Reflectance calibration laboratory. Sutton: Labsphere Inc.

    Google Scholar 

  26. Li, Y., Chen, D., Baker-Reid, F., & Eckard, R. (2008). Simulation of N2O emissions from rain-fed wheat and the impact of climate variation in southeastern Australia. Plant and Soil, 309, 239–251.

    CAS  Article  Google Scholar 

  27. Long, D. S., Engel, R. E., & Carlson, G. R. (2000). Method for precision nitrogen management in spring wheat: IIImplementation. Precision Agriculture, 2, 13.

    Article  Google Scholar 

  28. Maas, S. J., & Rajan. N. (2010). Normalizing and converting image DC data using scatter plot matching. Remote Sensing, 2, 1644–1661. doi:10.3390/rs2071644.

    Article  Google Scholar 

  29. Mulla, D. J. (2013). Twenty five years of remote sensing in precision agriculture: Key advances and remaining knowledge gaps. Biosystems Engineering, 114(2013), 358–371.

    Article  Google Scholar 

  30. Rodriguez, D., Fitzgerald, G. J., Belford, R., & Christensen, L. K. (2006). Detection of nitrogen deficiency in wheat from spectral reflectance indices and basic crop eco-physiological concepts. Australian Journal of Agricultural Research, 57, 8.

    Google Scholar 

  31. Senthilkumar, S., Basso, B., Kravchenko, A. N., & Robertson, G. P. (2009). Contemporary evidence of soil carbon loss in the U.S. Corn Belt. Soil Science Society of American Journal, 73, 8.

    Google Scholar 

  32. Staff, S. S. (1999). Soil taxonomy (2nd ed.). Washington, DC: USDA, National natural resources Conservation Service.

    Google Scholar 

  33. The MathWorks Inc. (2010). MATLAB version 7.10.0. Natick: MathWorks Inc.

    Google Scholar 

  34. Wiegand, C. L., Gerbermann, A. H., Gallo, K. P., Blad, B. L., & Dusek, D. (1990). Multisite analyses of spectral-biophysical data for corn. Remote Sensing of Environment, 33, 15.

    Article  Google Scholar 

Download references

Acknowledgments

The study was funded with the support of the S.I.Cer.Me project, Italian Ministry of Agriculture.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Bruno Basso.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Basso, B., Fiorentino, C., Cammarano, D. et al. Variable rate nitrogen fertilizer response in wheat using remote sensing. Precision Agric 17, 168–182 (2016). https://doi.org/10.1007/s11119-015-9414-9

Download citation

Keywords

  • CCCI
  • Nitrogen uptake
  • NUE
  • Wheat yield
  • Spatial and temporal variability
  • Mediterranean environment
  • Precision agriculture