Precision Agriculture

, Volume 16, Issue 4, pp 455–475 | Cite as

Site-specific fertilizer nitrogen management in irrigated transplanted rice (Oryza sativa) using an optical sensor

  • Bijay-Singh
  • Varinderpal-Singh
  • Jaspreet Purba
  • R. K. Sharma
  • M. L. Jat
  • Yadvinder-Singh
  • H. S. Thind
  • R. K. Gupta
  • O. P. Chaudhary
  • P. Chandna
  • H. S. Khurana
  • Ajay Kumar
  • Jagmohan-Singh
  • H. S. Uppal
  • R. K. Uppal
  • Monika Vashistha
  • Raj Gupta
Article

Abstract

Blanket fertilizer nitrogen (N) recommendations for large irrigated transplanted rice tracts lead to low N use-efficiency (NUE) due to field-to-field variability in soil N supply and seasonal variability in yield. To achieve high NUE, a fertilizer N management strategy based on visible and near-infrared spectral response from plant canopies using a GreenSeeker™ optical sensor was evaluated. Seven field experiments were conducted during 2005–2007 at two locations in the Indo-Gangetic plains of South Asia to define relationships between in-season sensor measurements at panicle initiation (PI) stage and up to 2 weeks later, and yield of rice. During 2006–2010, seven field experiments were conducted to assess the sensor-based N management strategy and to work out the prescriptive N management to be followed prior to applying sensor-guided fertilizer dose. During 2010 and 2011, the sensor- based N management strategy was evaluated versus farmers’ fertilizer practice at 19 on-farm locations. Relationships with R2 values 0.51 (n = 131), 0.45 (n = 74) and 0.49 (n = 131), respectively, were observed between in-season sensor-based estimates of yield at 42 (PI stage), 49 and 56 days after transplanting of rice and actual grain yield of rice. Applications of 30 kg N ha−1 at transplanting and 45 kg N ha−1 at active tillering stage were found to be the appropriate prescriptive strategy before applying the GreenSeeker-guided dose at PI stage. Sensor-guided N management resulted in similar grain yields as the blanket rate farmer practice, but with reduced N rates, i.e. greater recovery efficiency (by 5.5–21.7 %) and agronomic efficiency [by 4.7–11.7 kg grain (kg N applied)−1]. This study revealed that high yields coupled with high NUE in transplanted rice can be achieved by replacing blanket fertilizer recommendation by an optical sensor-based N management strategy consisting of applying a moderate amount of fertilizer N at transplanting and enough fertilizer N to meet the high N demand during the period between active tillering and PI before applying a sensor-guided fertilizer N dose at PI stage of rice.

Keywords

Fertilizer nitrogen management Optical sensor Irrigated rice Site-specific nitrogen management 

Notes

Acknowledgments

The authors gratefully acknowledge the Indian Council of Agricultural Research (ICAR), New Delhi for providing funds to carry out these investigations under the ICAR National Professor project. We thank Punjab Agricultural University (Ludhiana) and Directorate of Wheat Research-ICAR (Karnal) for providing the necessary facilities used in conducting the experiments.

References

  1. Adhikari, C., Bronson, K. F., Panaullah, G. M., Regmi, A. P., Saha, P. K., Dobermann, A., et al. (1999). On-farm N supply and N nutrition in the rice–wheat system of Nepal and Bangladesh. Field Crops Research, 64, 273–286.CrossRefGoogle Scholar
  2. Ali, A. M., Thind, H. S., Sharma, S., & Varinderpal-Singh, (2014). Prediction of dry direct-seeded rice yields using chlorophyll meter, leaf color chart and GreenSeeker optical sensor in northwestern India. Field Crops Research, 161, 11–15.CrossRefGoogle Scholar
  3. Aparicio, N., Villegas, D., Araus, J. L., Casadesús, J., & Royo, C. (2002). Relationship between growth traits and spectral vegetation indices in durum wheat. Crop Science, 42, 1547–1555.CrossRefGoogle Scholar
  4. Bajwa, S., Mishra, A. R., & Norman, R. J. (2010). Canopy reflectance response to plant nitrogen accumulation in rice. Precision Agriculture, 11, 488–506.CrossRefGoogle Scholar
  5. Baligar, V. C., Fageria, N. K., & He, Z. L. (2001). Nutrient use efficiency in plants. Communications in Soil Science and Plant Analysis, 32, 921–950.CrossRefGoogle Scholar
  6. Bijay-Singh, Sharma, R. K., Jaspreet-Kaur, Jat, M. L., Martin, K. L., Yadvinder-Singh, et al. (2011). Assessment of the nitrogen management strategy using an optical sensor for irrigated wheat. Agronomy for Sustainable Development, 31, 589–603.CrossRefGoogle Scholar
  7. Bijay-Singh, Varinderpal-Singh, Yadvinder-Singh, Thind, H. S., Ajay-Kumar, Gupta, R. K., et al. (2012). Fixed-time adjustable dose site-specific fertilizer nitrogen management in transplanted irrigated rice (Oryza sativa L.) in South Asia. Field Crops Research, 126, 63–69.CrossRefGoogle Scholar
  8. Bremner, J. M. (1965a). Total nitrogen. In C. A. Black (Ed.), Methods of soil analysis, Part 2 (pp. 1149–1178). Madison, Wisconsin, USA: American Society of Agronomy.Google Scholar
  9. Bremner, J. M. (1965b). Inorganic forms of nitrogen. In C. A. Black (Ed.), Methods of soil analysis, Part 2 (pp. 1179–1237). Madison, Wisconsin, USA: American Society of Agronomy.Google Scholar
  10. Campbell, J. B. (2002). Introduction to remote sensing (3rd ed.). New York: The Guilford Press.Google Scholar
  11. Cassman, K. G., Gines, G. C., Dizon, M. A., Samson, M. L., & Alcantara, J. M. (1996). Nitrogen-use efficiency in tropical lowland rice systems: Contributions from indigenous and applied nitrogen. Field Crops Research, 47, 1–12.CrossRefGoogle Scholar
  12. De Datta, S. K. (1981). Principles and practices of rice production. New York: Wiley.Google Scholar
  13. Dobermann, A., Witt, C., Abdulrachman, S., Gines, H. C., Nagarajan, R., Son, T. T., et al. (2003). Soil fertility and indigenous nutrient supply in irrigated domains of Asia. Agronomy Journal, 95, 913–927.CrossRefGoogle Scholar
  14. Dobermann, A., Witt, C., Dawe, D., Gines, H. C., Nagarajan, R., Satawathananont, S., et al. (2002). Site-specific nutrient management for intensive rice cropping systems in Asia. Field Crops Research, 74, 37–66.CrossRefGoogle Scholar
  15. Harrell, D. L., Tubana, B. S., Walker, T. W., & Phillips, S. B. (2011). Estimating rice grain yield potential using normalized difference vegetation index. Agronomy Journal, 103, 1717–1723.CrossRefGoogle Scholar
  16. IRRI. (1996). Use of leaf color chart (LCC) for N management in rice. Crop Resource Management Network Technology Brief No. 1. Manila, Philippines: International Rice Research Institute.Google Scholar
  17. Johnson, G. V., & Raun, W. R. (2003). Nitrogen response index as a guide to fertilizer management. Journal of Plant Nutrition, 26, 249–262.CrossRefGoogle Scholar
  18. Kanke, Y. (2013). Optimizing yield and crop nitrogen response characterization by integrating spectral reflectance and agronomic properties in sugarcane and rice. (Ph.D. Dissertation, Louisiana State University, 2013). Baton Rouge, LA 70803, USA.Google Scholar
  19. Li, F., Miao, Y., Zhang, F., Cui, Z., Li, R., Chen, X., et al. (2009). In-season optical sensing improves nitrogen use efficiency for winter wheat. Soil Science Society of America Journal, 73, 1566–1574.CrossRefGoogle Scholar
  20. Ma, B. L., Lianne, L. M., Dwyer, M., Costa, C., Cober, E. R., & Morrison, M. J. (2001). Early prediction of soybean yield from canopy reflectance measurements. Agronomy Journal, 93, 1227–1234.CrossRefGoogle Scholar
  21. Meelu, O. P., & Gupta, R. K. (1980). Time of fertilizer N application in rice culture. International Rice Research Newsletter, 5(3), 20–21.Google Scholar
  22. Meelu, O. P., Saggar, S., Maskina, M. S., & Rekhi, R. S. (1987). Time and source of nitrogen application in rice and wheat. The Journal of Agricultural Science, 109, 387–391.CrossRefGoogle Scholar
  23. Nguyen, H. T., Kim, J. H., Nguyen, A. T., Nguyen, L. T., Shin, J. C., & Lee, B. W. (2006). Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precision Agriculture, 7, 249–264.CrossRefGoogle Scholar
  24. Nguyen, H. T., Lee, K. G., & Lee, B. W. (2008). Recommendation of nitrogen topdressing rates at panicle initiation stage of rice using canopy reflectance. Journal of Crop Science and Biotechnology, 11, 141–150.Google Scholar
  25. Peñuelas, J., Gamon, J. A., Fredeen, A. L., Merino, J., & Field, C. B. (1994). Reflectance indices associated with physiological changes in nitrogen- and water-limited sunflower leaves. Remote Sensing of Environment, 48, 135–146.CrossRefGoogle Scholar
  26. Raun, W. R., Johnson, G. V., Stone, M. L., Solie, J. B., Lukina, E. V., Thomason, W. E., et al. (2001). In-season prediction of potential grain yield in winter wheat using canopy reflectance. Agronomy Journal, 93, 131–138.CrossRefGoogle Scholar
  27. Raun, W. R., Solie, J. B., Johnson, G. V., Stone, M. L., Mullen, R. W., Freeman, K. W., et al. (2002). Improving nitrogen use efficiency in cereal grain production with optical sensing and variable rate application. Agronomy Journal, 94, 815–820.CrossRefGoogle Scholar
  28. Shibayama, M., & Akiyama, T. (1991). Estimating grain yield of maturing rice canopies using high spectral resolution reflectance measurements. Remote Sensing of Environment, 36, 45–53.CrossRefGoogle Scholar
  29. Sims, D. A., & Gamon, J. A. (2002). Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sensing of Environment, 81, 337–354.CrossRefGoogle Scholar
  30. Stroppiana, D., Boschetti, M., Brivio, P. A., & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 111, 119–129.CrossRefGoogle Scholar
  31. Tubaña, B. S., Harrell, D., Walker, T., & Phillips, S. (2011). Midseason nitrogen fertilization rate decision tool for rice using remote sensing technology. Better Crops, 95(1), 22–24.Google Scholar
  32. Tubaña, B. S., Harrell, D. L., Walker, J., Teboth, J., Lofton, J., & Kanke, Y. (2012). In-season canopy reflectance-based estimation of rice yield response to nitrogen. Agronomy Journal, 104, 1604–1611.CrossRefGoogle Scholar
  33. Varinderpal-Singh, Bijay-Singh, Yadvinder-Singh, Thind, H. S., & Gupta, R. K. (2010). Need based nitrogen management using the chlorophyll meter and leaf colour chart in rice and wheat in South Asia: A review. Nutrient Cycling in Agroecosystems, 88, 361–380.CrossRefGoogle Scholar
  34. Walkley, A. (1947). A critical examination of a rapid method for determining organic carbon in soils: Effect of variations in digestion conditions and of inorganic soil constituents. Soil Science, 63, 251–263.CrossRefGoogle Scholar
  35. Wells, B. R., Norman, R. J., Helms, R. S., & Baser, R. E. (1989). Use of plant measurement as an indication of midseason nitrogen fertilization. In W. E. Sabbe (Ed.), Arkansas soil fertility studies, 1988 (Vol. 385, pp. 45–48). Fayetteville, USA: Arkansas Agricultural Experiment Station.Google Scholar
  36. Xue, L. H., Cao, W. X., Luo, W. H., & Dai, T. B. (2004). Monitoring leaf nitrogen status in rice with canopy spectral reflectance. Agronomy Journal, 96, 135–142.CrossRefGoogle Scholar
  37. Xue, L., Li, G., Qin, X., Yang, L., & Zhang, H. (2014). Topdressing nitrogen recommendation for early rice with an active sensor in South China. Precision Agriculture, 15, 95–110.CrossRefGoogle Scholar
  38. Xue, L. H., & Yang, L. Z. (2008). Recommendations for nitrogen fertilizer topdressing rates in rice using canopy reflectance spectra. Biosystems Engineering, 100, 524–534.CrossRefGoogle Scholar
  39. Yadvinder-Singh, Bijay-Singh, Ladha, J. K., Singh, J. P., & Choudhary, O. P. (2007). Enhancing nitrogen use efficiency for sustainable rice-wheat production system in the Indo-Gangetic Plains of India. In Y. P. Abrol, N. Raghuram, & M. S. Sachdev (Eds.), Agricultural nitrogen use and its environmental implications (pp. 139–164). New Delhi, India: I.K. International Publishing House Private Limited.Google Scholar
  40. Yao, Y., Miao, Y., Hunag, S., Gao, L., Ma, X., Zhao, G., et al. (2012). Active canopy sensor-based precision N management strategy for rice. Agronomy for Sustainable Development, 32, 925–933.CrossRefGoogle Scholar
  41. Yoshida, S., Forno, D. A., Cock, D. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. Los Baños, Laguna, Philippines: International Rice Research Institute.Google Scholar
  42. Zhang, J. H., Wang, K., Bailey, J. S., & Wang, R. C. (2006). Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere, 16, 108–117.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Bijay-Singh
    • 1
  • Varinderpal-Singh
    • 1
  • Jaspreet Purba
    • 2
  • R. K. Sharma
    • 3
  • M. L. Jat
    • 4
  • Yadvinder-Singh
    • 2
  • H. S. Thind
    • 2
  • R. K. Gupta
    • 2
  • O. P. Chaudhary
    • 2
  • P. Chandna
    • 4
  • H. S. Khurana
    • 1
  • Ajay Kumar
    • 1
  • Jagmohan-Singh
    • 1
  • H. S. Uppal
    • 1
  • R. K. Uppal
    • 1
  • Monika Vashistha
    • 1
  • Raj Gupta
    • 4
  1. 1.ICAR National Professor ProjectPunjab Agricultural UniversityLudhianaIndia
  2. 2.Department of Soil SciencePunjab Agricultural UniversityLudhianaIndia
  3. 3.Directorate of Wheat ResearchKarnalIndia
  4. 4.International Maize and Wheat Improvement Centre (CIMMYT)New DelhiIndia

Personalised recommendations