Skip to main content
Log in

Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: a case study in Triticale (X Triticosecale Wittmack)

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

The amount of photosynthetically active radiation (PAR, 0.4–0.7 μm) absorbed by plants for photosynthesis relative to incident radiation is defined as the fraction of absorbed photosynthetically active radiation (fAPAR). This is an important variable in both plant biomass production and plant growth modeling. This study investigates the application of a newly developed, linear irradiance sensor (LightScout Quantum Bar Sensor, LightScout, Spectrum Technologies, Inc. USA), to quantify fAPAR for a demonstrator crop, Triticale (X Triticosecale Wittmack). A protocol was devised for sensor placement to determine reflected PAR components of fAPAR and to determine the optimal time of day and sensor orientation for data collection. Coincident, top of canopy, normalized difference vegetation index (NDVI) measurements were also acquired with a CropCircle™ ACS-210 sensor and measurements correlated with derived fAPAR values. The optimum height of the linear irradiance sensor above soil or plant canopy was found to be 0.4 m while measuring reflected PAR. Measurement of fAPAR was found to be stable when conducted within 1 h of local solar noon in order to avoid significant bidirectional effects resulting from diurnal changes of leaf orientation relative to the vertically-placed sensor. In the row crop studied, averaging fAPAR readings derived from the linear irradiance sensor orientated across and along the plant row provided an R2 = 0.81 correlation with above-canopy NDVI. Across row sensor orientation also gave a similar correlation of R2 = 0.76 allowing the user to reduce sampling time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Allen, L. H., Yocum, C. S., & Lemon, E. R. (1964). Photosynthesis under field conditions. VII. Radiant energy exchanges within a corn crop canopy and implications in water use efficiency. Agronomy Journal, 56(3), 253–259. doi:10.2134/agronj1964.00021962005600030002x.

    Article  Google Scholar 

  • Arkin, G. F., Ritchie, J. T., & Mass, S. J. (1978). A model for calculating light interception by a grain sorghum canopy. Transactions of the American Society of Agricultural Engineers, 21(2), 303–308.

    Article  Google Scholar 

  • Asrar, G., Fuchs, M., Kanemasu, E. T., & Hatfield, J. L. (1984). Estimating absorbed photosynthetic radiation and leaf area index from spectral reflectance in wheat. Agronomy Journal, 76(2), 300–306. doi:10.2134/agronj1984.00021962007600020029x.

    Article  Google Scholar 

  • Asrar, G., Myneni, R. B., & Choudhury, B. J. (1992). Spatial heterogeneity in vegetation canopies and remote sensing of absorbed photosynthetically active radiation: A modeling study. Remote Sensing of Environment, 41(2–3), 85–103. doi:10.1016/0034-4257(92)90070-z.

    Article  Google Scholar 

  • Baker, D. N., & Musgrave, R. B. (1964). Photosynthesis under field conditions. V. Further plant chamber studies of the effect of light on corn (Zea mays L.). Crop Science, 4(2), 127–131. doi:10.2135/cropsci1964.0011183X000400020001x.

    Article  Google Scholar 

  • Baret, F., & Guyot, G. (1991). Potentials and limits of vegetation indices for LAI and APAR assessment. Remote Sensing of Environment, 35(2–3), 161–173. doi:10.1016/0034-4257(91)90009-u.

    Article  Google Scholar 

  • Bégué, A., Hanan, N. P., & Prince, S. D. (1994). Radiative transfer in shrub savanna sites in Niger—preliminary results from HAPEX-II-Sahel II. PAR interception of the woody layer. Agricultural and Forest Meteorology, 69, 247–266.

    Article  Google Scholar 

  • Daughtry, C. S. T., Gallo, K. P., & Bauer, M. E. (1983). Spectral estimates of solar radiation intercepted by corn canopies. Agronomy Journal, 75(3), 527–531. doi:10.2134/agronj1983.00021962007500030026x.

    Article  Google Scholar 

  • Daughtry, C. S. T., Gallo, K. P., Goward, S. N., Prince, S. D., & Kustas, W. P. (1992). Spectral estimates of absorbed radiation and phytomass production in corn and soybean canopies. Remote Sensing of Environment, 39(2), 141–152. doi:10.1016/0034-4257(92)90132-4.

    Article  Google Scholar 

  • Drolet, G. G., Huemmrich, K. F., Hall, F. G., Middleton, E. M., Black, T. A., Barr, A. G., et al. (2005). A MODIS-derived photochemical reflectance index to detect inter-annual variations in the photosynthetic light-use efficiency of a boreal deciduous forest. Remote Sensing of Environment, 98(2–3), 212–224. doi:10.1016/j.rse.2005.07.006.

    Article  Google Scholar 

  • Gallo, K. P., & Daughtry, C. S. T. (1986). Techniques for measuring intercepted and absorbed photosynthetically active radiation in corn canopies. Agronomy Journal, 78, 752–756.

    Article  Google Scholar 

  • Gallo, K. P., Daughtry, C. S. T., & Bauer, M. E. (1985). Spectral estimation of absorbed photosynthetically active radiation in corn canopies. Remote Sensing of Environment, 17(3), 221–232. doi:10.1016/0034-4257(85)90096-3.

    Article  Google Scholar 

  • Hanan, N. P., & Bégué, A. (1995). A method to estimate instantaneous and daily intercepted photosynthetically active radiation using a hemispherical sensor. Agricultural and Forest Meteorology, 74, 155–168.

    Article  Google Scholar 

  • Hipps, L. E., Asrar, G., & Kanemasu, E. T. (1983). Assessing the interception of photosynthetically active radiation in winter wheat. Agricultural Meteorology, 28(3), 253–259. doi:10.1016/0002-1571(83)90030-4.

    Article  Google Scholar 

  • Holland, K. H., Lamb, D. W., & Schepers, J. S. (2012). Radiometry of proximal active optical sensors (AOS) for agricultural sensing. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 5(6), 1–10. doi:10.1109/JSTARS.2012.2198049.

    Article  Google Scholar 

  • Holland, K. H., Schepers, J. S., Shanahan, J. F., & Horst, G. L. (2004). Plant canopy sensor with modulated polychromatic light source. Paper presented at the proceedings of the 7th international conference on precision agriculture and other precision resources management. University of Minnesota, Department of Soil, Water and Climate, St Paul, MN, USA.

  • Lamb, D. W., Trotter, M. G., & Schneider, D. A. (2009). Ultra low-level airborne (ULLA) sensing of crop canopy reflectance: A case study using a CropCircle™ sensor. Computers and Electronics in Agriculture, 69(1), 86–91. doi:10.1016/j.compag.2009.07.004.

    Article  Google Scholar 

  • McCree, K. J. (1972). Test of current definitions of photosynthetically active radiation against leaf photosynthesis data. Agricultural Meteorology, 10, 443–453. doi:10.1016/0002-1571(72)90045-3.

    Article  Google Scholar 

  • Myneni, R. B., & Williams, D. L. (1994). On the relationship between FAPAR and NDVI. Remote Sensing of Environment, 49(3), 200–211. doi:10.1016/0034-4257(94)90016-7.

    Article  Google Scholar 

  • Pinter, P. J, Jr. (1993). Solar angle independence in the relationship between absorbed PAR and remotely sensed data for alfalfa. Remote Sensing of Environment, 46(1), 19–25. doi:10.1016/0034-4257(93)90029-w.

    Article  Google Scholar 

  • Pitman, A. J. (2003). The evolution of, and revolution in, land surface schemes designed for climate models. International Journal of Climatology, 23(5), 479–510. doi:10.1002/joc.893.

    Article  Google Scholar 

  • Rao, V. R., Brach, E. J., & Mack, A. R. (1979). Bidirectional reflectance of crops and the soil contribution. Remote Sensing of Environment, 8, 115–125.

    Article  Google Scholar 

  • Ross, R., & Marshak, A. (1989). The influence of leaf orientation and the specular component of leaf reflectacne on the canopy bidirectional reflectance. Remote Sensing of Environment, 27, 251–260.

    Article  Google Scholar 

  • Rouse, J. W., Haas, R. H., Schell, J. A., & Deering, D. W. (1973). Monitoring vegetation systems in the great plains with ERTS. Paper presented at the proceedings of the third ERTS symposium, Washington, DC.

  • Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., & Hashimoto, H. (2004). A continuous satellite-derived measure of global terrestrial primary production. BioScience, 54(6), 547–560.

    Article  Google Scholar 

  • Sellers, P. J. (1985). Canopy reflectance, photosynthesis and transpiration. International Journal of Remote Sensing, 6(8), 1335–1372. doi:10.1080/01431168508948283.

    Article  Google Scholar 

  • Sellers, P. J., Dickinson, R. E., Randall, D. A., Betts, A. K., Hall, F. G., Berry, J. A., et al. (1997). Modeling the exchanges of energy, water, and carbon between continents and the atmosphere. Science, 275(5299), 502–509. doi:10.1126/science.275.5299.502.

    Article  PubMed  CAS  Google Scholar 

  • Suits, G. H. (1972). The cause of azimuthal variations in directional reflectance of vegetative canopies. Remote Sensing of Environment, 2, 175–182.

    Article  Google Scholar 

  • Viña, A., & Gitelson, A. A. (2005). New developments in the remote estimation of the fraction of absorbed photosynthetically active radiation in crops. Geophysical Reseach Letters, 32(17), L17403. doi:10.1029/2005gl023647.

    Article  Google Scholar 

  • Walthall, C. L., Norman, J. M., Welles, J. M., Campbell, G., & Blad, B. L. (1985). Simple equation to approximate the bidirectional reflectance from vegetative canopies and bare soil surfaces. Applied Optics, 24(3), 383–387.

    Article  PubMed  CAS  Google Scholar 

  • Wiegand, C. L., Richardson, A. J., Escobar, D. E., & Gerbermann, A. H. (1991). Vegetation indices in crop assessments. Remote Sensing of Environment, 35(2–3), 105–119. doi:10.1016/0034-4257(91)90004-p.

    Article  Google Scholar 

  • Williams, W. A., Loomis, R. S., & Lepley, C. R. (1965). Vegetative of corn as affected by population density. I. Productivity in relation to interception of solar radiation. Crop Science, 5(3), 211–215. doi:10.2135/cropsci1965.0011183X000500030004x.

    Article  Google Scholar 

  • Zadoks, J. C., Chang, T. T., & Konzak, C. F. (1974). A decimal code for the growth stages of cereals. Weed Research, 14(6), 415–421. doi:10.1111/j.1365-3180.1974.tb01084.x.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the receipt of an International Postgraduate Research Scholarship (Rahman) to conduct this study. This work was partially funded by the CRC for Spatial Information (CRCSI), established and supported under the Australian Government’s Cooperative Research Centres Programme. The authors gratefully acknowledge the assistance of Derek Schneider (UNE-PARG/CRCSI) for technical assistance in configuring the instruments for fieldwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. M. Rahman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahman, M.M., Stanley, J.N., Lamb, D.W. et al. Methodology for measuring fAPAR in crops using a combination of active optical and linear irradiance sensors: a case study in Triticale (X Triticosecale Wittmack). Precision Agric 15, 532–542 (2014). https://doi.org/10.1007/s11119-014-9349-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9349-6

Keywords

Navigation