Skip to main content

Advertisement

Log in

Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.)

  • Published:
Precision Agriculture Aims and scope Submit manuscript

Abstract

In situ, non-destructive and real time mineral nutrient stress monitoring is an important aspect of precision farming for rational use of fertilizers. Studies have demonstrated the ability of remote sensing to monitor nitrogen (N) in many crops, phosphorus (P) and potassium (K) in very few crops and none so far to monitor sulphur (S). Specially designed (1) fertility gradient experiment and (2) test crop experiments were used to check the possibility of mineral N–P–S–K stress detection using airborne hyperspectral remote sensing. Leaf and canopy hyperspectral reflectance data and nutrient status at booting stage of the wheat crop were recorded. N–P–S–K sensitive wavelengths were identified using linear correlation analysis. Eight traditional vegetation indices (VIs) and three proposed (one for P and two for S) were evaluated for plant N–P–S–K predictability. A proposed VI (P_1080_1460) predicted P content with high and significant accuracy (correlation coefficient (r) 0.42 and root means square error (RMSE) 0.180 g m−2). Performance of the proposed S VI (S_660_1080) for S concentration and content retrieval was similar whereas prediction accuracies were higher than traditional VIs. Prediction accuracy of linear regressive models improved when biomass-based nutrient contents were considered rather than concentrations. Reflectance in the SWIR region was found to monitor N–P–S–K status in plants in combination with reflectance at either visible (VIS) or near infrared (NIR) region. Newly developed and validated spectral algorithms specific to N, P, S and K can further be used for monitoring in a wheat crop in order to undertake site-specific management.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ayala-Silva, T., & Beyl, C. A. (2005). Changes in spectral reflectance of wheat leaves in response to specific macronutrient deficiency. Advances in Space Research, 35, 305–317.

    Article  PubMed  CAS  Google Scholar 

  • Ben-ze’ev, E., Earnieli, A., Agam, N., Kaufman, Y., & Holben, B. (2006). Assessing vegetation condition in the presence of biomass burning smoke by applying the aerosol-free vegetation index (AFRI) on MODIS images. International Journal of Remote Sensing, 27, 3203–3221.

    Article  Google Scholar 

  • Birth, G. S., & McVey, G. R. (1968). Measuring the color of growing turf with a reflectance spectrophotometer. Agronomy Journal, 60, 640–643.

    Article  Google Scholar 

  • Blackburn, G. A. (1998). Quantifying chlorophylls and caroteniods at leaf and canopy scales: An evaluation of some hyperspectral approaches. Remote Sensing of Environment, 66, 273–285.

    Article  Google Scholar 

  • Chen, S., Li, D., Wang, Y., Peng, Z., & Chen, W. (2011). Spectral characterization and prediction of nutrient content in winter leaves of litchi during flower bud differentiation in southern China. Precision Agriculture, 12, 682–698.

    Article  Google Scholar 

  • Cohen, Y., Alchanatis, V., Zusman, Y., Dar, Z., Bonfil, D. J., Karnieli, A., et al. (2009). Leaf nitrogen estimation in potato based on spectral data and on simulated bands of the VENμS satellite. Precision Agriculture, 11, 520–537.

    Article  Google Scholar 

  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30, 271–278.

    Article  Google Scholar 

  • FAOSTAT (2012). Retrieved May 10, 2012 from, http://faostat.fao.org/site/567/DesktopDefault.aspx?PageID=567#ancor, .

  • Feng, W., Yao, X., Zhu, Y., Tian, Y. C., & Cao, W. (2008). Monitoring leaf nitrogen status with hyperspectral reflectance in wheat. European Journal of Agronomy, 28, 394–404.

    Article  CAS  Google Scholar 

  • Ferwerda, J. G., & Skidmore, A. K. (2007). Can nutrient status of four woody plant species be predicted using field spectrometry? ISPRS Journal of Photogrammetry and Remote Sensing, 62, 406–414.

    Article  Google Scholar 

  • Ferwerda, J. G., Skidmore, A. K., & Mutanga, O. (2005). Nitrogen detection with hyperspectral normalized ratio indices across multiple plant species. International Journal of Remote Sensing, 26, 4083–4095.

    Article  Google Scholar 

  • Fridgen, J. L., & Varco, J. J. (2004). Dependency of cotton leaf nitrogen, chlorophyll and reflectance on nitrogen and potassium availability. Agronomy Journal, 96, 63–69.

    Article  Google Scholar 

  • Gitelson, A., Kaufman, Y., & Merzlyak, M. (1996). Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sensing of Environment, 58, 289–298.

    Article  Google Scholar 

  • Hanway, J. J., & Heidel, H. (1952). Soil analysis methods as used in Iowa State College Soil Testing Laboratory. Bulletin 57, 57, 1–31.

    Google Scholar 

  • Havlin, J. L., Beatib, J. D., Tisdale, S. L., & Nelson, W. L. (2005). Soil fertility and fertilizers—An introduction to nutrient management, New Jersey. Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Herrmann, I., Karnieli, A., Bonfil, D. J., Cohen, Y., & Alchanatis, V. (2010). SWIR-based spectral indices for assessing nitrogen content in potato fields. International Journal of Remote Sensing, 31, 5127–5143.

    Article  Google Scholar 

  • Hiscox, J. D., & Israelstam, G. F. (1979). A method for the extraction of chlorophyll from leaf tissue without maceration. Canadian Journal of Botany, 57, 1332–1334.

    Article  CAS  Google Scholar 

  • Huete, A. (1988). A soil-adjusted vegetation index (SAVI). Remote Sensing of Environment, 25, 295–309.

    Article  Google Scholar 

  • Jackson, M. L. (1973). Soil Chemical Analysis. New Delhi: Prentice Hall of India Private Limited press.

    Google Scholar 

  • Jacob, J., & Lawlor, D. W. (1991). Stomatal and mesophyll limitations of photosynthesis in phosphate deficient sunflower, maize and wheat plants. Journal of Experimental Botany, 42, 1003–1011.

    Article  CAS  Google Scholar 

  • Karnieli, A., Kaufman, Y., Remer, I., & Andwald, A. (2001). AFRI—Aerosol Free Vegetation Index. Remote Sensing of Environment, 77, 10–21.

    Article  Google Scholar 

  • Mengel, K., & Kirkby, E. A. (1996). Principles of Plant Nutrition (4th ed.). New Delhi: Panina Publishing Corporation.

    Google Scholar 

  • Milton, E. J., Schaepman, M. E., Anderson, K., Kneubühler, M., & Fox, N. (2009). Progress in field spectroscopy. Remote Sensing of Environment, 113, 92–109.

    Article  Google Scholar 

  • Olsen,. S. R., Cole, C. V., Watanabe, F. S., & Dean, L. (1954). Estimation of available phosphorus in soils by extraction with sodium bicarbonate. USDA Circ. 93. Washington: US Govt. Printing Office.

    Google Scholar 

  • Osborne, S., Schepers, J., Francis, D., & Schlemmer, M. (2002). Detection of phosphorus and nitrogen deficiencies in corn using spectral radiance measurements. Agronomy Journal, 94, 1215–1221.

    Article  Google Scholar 

  • Pimstein, A., Eitel, J. U., Long, D. S., Mufradi, I., Karnieli, A., & Bonfil, D. J. (2009). A spectral index to monitor the head-emergence of wheat in semi-arid conditions. Field Crops Research, 111, 218–225. doi:10.1016/j.fcr.2008.12.009.

    Article  Google Scholar 

  • Pimstein, A., Karnieli, A., Bansal, S. K., & Bonfild, D. J. (2011). Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crops Research, 121, 125–135.

    Article  Google Scholar 

  • Prabhakar, M., Prasad, Y. G., Thirupathi, M., Sreedevi, G., Dharajothi, B., & Venkateswarlu, B. (2011). Use of ground based hyperspectral remote sensing for detection of stress in cotton caused by leafhopper (Hemiptera: Cicadellidae). Computers and Electronics in Agriculture, 79, 189–198.

    Article  Google Scholar 

  • Ramamoorthy, B., Narasimham, R. L., & Dinesh, R. S. (1967). Fertilizer application for specific yield targets on Sonora 64 (wheat). Indian Farming, 17, 43–45.

    Google Scholar 

  • Ranjan, R., Chopra, U. K., Sahoo, R. N., Singh, A. K., & Pradhan, S. (2012). Assesement of plant nitrogen stress in wheat (Triticum aestivum L.) through hyperspectral indices. International Journal of Remote Sensing, 33, 6342–6360. doi:10.1080/01431161.2012.687473.

    Article  Google Scholar 

  • Rondeaux, G., Steven, M., & Baret, F. (1996). Optimization of soil-adjusted vegetation indices. Remote Sensing of Environment, 55, 95–107.

    Article  Google Scholar 

  • Rouse, J., Haas, R.H., Schell, J.A., & Deering, D.W. (1974). Monitoring vegetation systems in the Great Plains with ERTS. In 3rd Earth resources technology satellite-1 symposium, NASA SP-351, Greenbelt (pp. 301–317).

  • Ryu, C. S., Suguri, M., & Umeda, M. (2009). A model for predicting the nitrogen content of rice at panicle initiation stage using data from airborne hyperspectral remote sensing. Biosystems Engineering, 104, 465–475.

    Article  Google Scholar 

  • Samborski, S. M., Tremblay, N., & Fallon, E. (2009). Strategies to make use of plant sensors-based diagnostic information for nitrogen recommendations. Agronomy Journal, 101, 800–816.

    Article  CAS  Google Scholar 

  • Sindhuja, S., Mishra, A., Reza, E., & Davis, C. (2010). A review of advanced techniques for detecting plant diseases. Computers and Electronics in Agriculture, 72, 1–13.

    Article  Google Scholar 

  • Stanhill, G., Kafkafi, U., Fuchs, M., & Kagan, Y. (1972). The effect of fertilizer application on solar reflectance from wheat crop. Israel Journal of Agricultural Research, 22, 109–118.

    Google Scholar 

  • Stropiana, D., Boschetti, M., Brivio, A. P., & Bocchi, S. (2009). Plant nitrogen concentration in paddy rice from field canopy hyperspectral radiometry. Field Crops Research, 11, 119–129.

    Article  Google Scholar 

  • Subbiah, B. V., & Asija, G. L. (1956). A rapid procedure for the estimation of available nitrogen in soil. Current Science, 25, 259–260.

    CAS  Google Scholar 

  • Tabatabai, M. A., & Bremer, J. M. (1970). A simple turbidimetric method of determining total sulphur in plant materials. Agronomy Journal, 62, 805–806.

    Article  CAS  Google Scholar 

  • Tandon, H. L. S. (2004). Fertilizers in Indian agriculture—from 20th to 21st century. New Delhi: FDCO.

    Google Scholar 

  • Thenkabail, P. S., Enclona, E. A., Asthon, M. S., & Van Der, M. B. (2004). Accuracy assessment of hyperspectral waveband performance for vegetation analysis applications. Remote Sensing of Environment, 91, 354–376.

    Article  Google Scholar 

  • Walkley, A. J., & Black, I. A. (1934). Estimation of organic carbon by chromic acid titration method. Soil Science, 37, 29–38.

    Article  CAS  Google Scholar 

  • Williams, C. H., & Steinberg, A. (1959). Soil sulphur fractions as chemical indices of available sulphur in some Australian soils. Australian Journal Agricultural Research, 10, 340–352.

    Article  CAS  Google Scholar 

  • Yi, Q. X., Huang, J. F., & Wang, X. Z. (2007). Hyperspectral estimation models for crude fibre concentration of corn. Journal of Infrared and Millimeter Waves, 26, 393–400.

    CAS  Google Scholar 

  • Yoshida, S., Forno, D. A., Cock, D. H., & Gomez, K. A. (1976). Laboratory manual for physiological studies of rice. Los Baños: International Rice Research Institute.

    Google Scholar 

  • Zhao, D., Raja Reddy, K., Kakani, V. G., Read, J. J., & Carter, G. A. (2003). Corn (Zea mays L.) growth, leaf pigment concentration, photosynthesis and leaf hyperspectral reflectance properties as affected by nitrogen supply. Plant and Soil, 257, 205–217.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The award of Senior Research Fellowship by the Indian Council of Agricultural Research, New Delhi, to G. R. Mahajan (first author) is gratefully acknowledged. Authors are especially thankful to Division of Agricultural Physics, Indian Agricultural Research Institute, New Delhi-110012 for providing a spectro-radiometer for carrying out the present research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. R. Mahajan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mahajan, G.R., Sahoo, R.N., Pandey, R.N. et al. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precision Agric 15, 499–522 (2014). https://doi.org/10.1007/s11119-014-9348-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11119-014-9348-7

Keywords

Navigation