Aber, J. S., Aaviksoo, K., Karofeld, E., & Aber, S. W. (2002). Patterns in Estonian bogs as depicted in color kite aerial photographs. Suo,
53, 1–15.
Google Scholar
Aber, J. S., Aber, S. W., Buster, L., Jensen, W. E., & Sleezer, R. O. (2009). Challenge of infrared kite aerial photography: A digital update. Kansas Academy of Science Transactions,
112, 31–39.
Article
Google Scholar
Aber, J. S., Marzolff, I., & Ries, J. B. (2010). Small-format aerial photography. Boston: Elsevier. 266.
Google Scholar
Adrian, A. M., Norwood, S. H., & Mask, P. L. (2005). Producers’ perceptions and attitudes toward precision agriculture technologies. Computer and Electronics in Agriculture,
48, 256–271.
Article
Google Scholar
Amoroso, L., & Arrowsmith, R. (2000). Balloon photography of brush fire scars east of Carefree, AZ. Retrieved March 12, 2012 from http://activetectonics.asu.edu/Fires_and_Floods/10_24_00_photos/.
Aylor, D. E., Boehm, M. T., & Shields, E. J. (2006). Quantifying aerial concentrations of maize pollen in the atmospheric surface layer using remotely-piloted airplanes and Lagrangian stochastic modeling. Journal of Applied Meteorology and Climatology,
45, 1003–1015.
Article
Google Scholar
Bausch, W. C., & Khosla, R. (2010). QuickBird satellite versus ground-based multi-spectral data for estimating nitrogen status of irrigated maize. Precision Agriculture,
11, 274–290.
Article
Google Scholar
Beeri, O., & Peled, A. (2009). Geographical model for precise agriculture monitoring with real-time remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing,
64, 47–54.
Article
Google Scholar
Beeri, O., Phillips, R., Carson, P., & Liebig, M. (2005). Alternate satellite models for estimation of sugar beet residue nitrogen credit. Agriculture, Ecosystems & Environment,
107, 21–35.
Article
Google Scholar
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., & Fereres, E. (2009a). Thermal and narrowband multispectral remote sensing for vegetation monitoring from an unmanned aerial vehicle. IEEE Transactions on Geoscience and Remote Sensing,
47, 722–738.
Article
Google Scholar
Berni, J. A. J., Zarco-Tejada, P. J., Suarez, L., Gonzalez-Dugo, V., & Fereres, E. (2009a). Remote sensing of vegetation from UAV platforms using lightweight multispectral and thermal imaging sensors. Retrieved March 12, 2012 from http://www.ipi.uni-hannover.de/fileadmin/institut/pdf/isprs-Hannover2009/Jimenez_Berni-155.pdf.
Blackmore, S. (2000). The interpretation of trends from multiple yield maps. Computers and Electronics in Agriculture,
26, 37–51.
Article
Google Scholar
Blackmore, S., Godwin, R. J., & Fountas, S. (2003). The analysis of spatial and temporal trends in yield map data over six years. Biosystems Engineering,
84, 455–466.
Article
Google Scholar
Castillejo-Gonzalez, I. L., Lopez-Granados, F., Garcia-Ferrer, A., Pena-Barragan, J. M., Jurado-Exposito, M., Orden, M. S., et al. (2009). Object- and pixel-based analysis for mapping crops and their agro-environmental associated measures using QuickBird imagery. Computers and Electronics in Agriculture,
68, 207–215.
Article
Google Scholar
Chandler, J., Fryer, J. G., & Jack, A. (2005). Metric capabilities of low-cost digital cameras for close range surface measurement. The Photogrammetric Record,
20, 12–26.
Article
Google Scholar
Clevers, J. G. P. W. (1988). The derivation of a simplified reflectance model for the estimation of leaf area index. Remote Sensing of Environment,
35, 53–70.
Article
Google Scholar
Colewell, R. N. (1956). Determining the prevalence of certain cereal crop diseases by means of aerial photography. Hilgardia,
26, 223–286.
Google Scholar
Cook, S. E., & Bramley, R. G. V. (1998). Precision agriculture: Opportunities, benefits and pitfalls of site specific crop management in Australia. Australian Journal of Experimental Agriculture,
38, 753–763.
Article
Google Scholar
De Tar, W. R., Chesson, J. H., Penner, J. V., & Ojala, J. C. (2008). Detection of soil properties with airborne hyperspectral measurements of bare fields. Transactions of the ASABE,
51, 463–470.
Google Scholar
Diker, K., Heermann, D. F., & Bordahl, M. K. (2004). Frequency analysis of yield for delineating yield response zones. Precision Agriculture,
5, 435–444.
Article
Google Scholar
Donoghue, D., Watt, P., Cox, N., & Wilson, J. (2006). Remote sensing of species mixtures in conifer plantations using LiDAR height and intensity data. International Workshop 3D remote sensing in Forestry. Retrieved March 12, 2012 form (http://www.rali.boku.ac.at/fileadmin/_/H857-VFL/workshops/3drsforestry/presentations/6a.5-donoghue.pdf).
Du, Q., Chang, N. B., Yang, C. H., & Srilakshmi, K. R. (2008). Combination of multispectral remote sensing, variable rate technology and environmental modeling for citrus pest management. Journal of Environmental Management,
86, 14–26.
PubMed
Article
Google Scholar
Eisenbeiss, H. (2004). A mini unmanned aerial vehicle (UAV): system over and image acquisition. In: A. Gruen, Sh. Murai, T. Fuse, F. Remondino (Eds.). Proceedings of International Workshop on Processing and Visualization Using High-Resolution Imagery, XXXVI(5/W1), Pitsanulok, Thailand. CDROM. Retrieved March 12, 2012 from http://www.isprs.org/proceedings/XXXVI/5-W1/papers/11.pdf.
Enclona, E. A., Thenkabail, P. S., Celis, D., & Diekmann, J. (2004). Within-field wheat yield prediction from IKONOS data: A new matrix approach. International Journal of Remote Sensing,
25, 377–388.
Article
Google Scholar
Erickson, B. J., Johannsen, C. J., Vorst, J. J., & Biehl, L. L. (2004). Using remote sensing to assess stand loss and defoliation in maize. Photogrammetric Engineering and Remote Sensing,
70, 717–722.
Google Scholar
Eugster, H., & Nebiker, S. (2007). Geo-registration of video sequences captured from Mini UAVs: Approaches and accuracy assessment. The 5th International Symposium on Mobile Mapping Technology, Padua, Italy. Retrieved March 12, 2012 from http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&cts=1331769791050&ved=0CCYQFjAA&url=http%3A%2F%2Fwww.3dgi.ch%2Fpublications%2Feh%2F2007_MMT07_Padua_final.pdf&ei=rzFhT9LrN4aJtwe9w9W-BQ&usg=AFQjCNHlP4X-S3DkZib-OdlEap7T4JBtg.
Fisher, P. D., Abuzar, M., Rab, M. A., Best, F., & Chandra, S. (2009). Advances in precision agriculture in south-eastern Australia. I. A regression methodology to simulate spatial variation in cereal yields using farmers’ historical paddock yields and normalised difference vegetation index. Crop & Pasture Science,
60, 844–858.
Article
Google Scholar
Flowers, M., Weisz, R., & White, J. G. (2005). Yield-based management zones and grid sampling strategies: Describing soil test and nutrient variability. Agronomy Journal,
97, 968–982.
Article
Google Scholar
Godwin, R. J., Richards, T. E., Wood, G. A., Welsh, J. P., & Knight, S. M. (2003). An economic analysis of the potential for precision farming in UK cereal production. Biosystems Engineering,
84, 533–545.
Article
Google Scholar
Gomez, C., Rossel, R. A. V., & McBratney, A. B. (2008). Soil organic carbon prediction by hyperspectral remote sensing and field vis-NIR spectroscopy: An Australian case study. Geoderma,
146, 403–411.
Article
CAS
Google Scholar
Gomez-Candon, D., Lopez-Granados, F., Caballero-Novella, J. J., Gomez-Casero, M. T., Jurado-Exposito, M., & Garcia-Torres, L. (2011). Geo-referencing remote images for precision agriculture using artificial terrestrial targets. Precision Agriculture,
12, 876–891.
Article
Google Scholar
Gomez-Casero, M. T., Castillejo-Gonzalez, I. L., Garcia-Ferrer, A., Pena-Barragan, J. M., Jurado-Exposito, M., Garcia-Torres, L., et al. (2010). Spectral discrimination of wild oat and canary grass in wheat fields for less herbicide application. Agronomy for Sustainable Development,
30, 689–699.
Article
Google Scholar
Griffin, T. W., Lowenberg-Deboer, J., Lambert, D. M., Peone, J., Payne, T., & Daberkow, S. G. (2004). Adoption, profitability, and making better use of precision farming data. Staff paper No. 04–06 West Lafayette, IN, USA: Department of Agricultural Economics, Purdue University.
Gutierrez, P. A., Lopez-Granados, F., Jurado-Exposito, J. M. P. M., & Hervas-Martinez, C. (2008). Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture,
64, 293–306.
Article
Google Scholar
Haboudane, D., Miller, J. R., Pattey, E., Zarco-Tejada, P. J., & Strachan, I. B. (2004). Hyperspectral vegetation indices and novel algorithms for predicting green LAI of crop canopies: Modeling and validation in the context of precision agriculture. Remote Sensing of Environment,
90, 337–352.
Article
Google Scholar
Hardin, P. J., & Hardin, T. J. (2010). Small-scale remotely piloted vehicles in environmental research. Geography Compass,
4, 1297–1311.
Article
Google Scholar
Hardin, P., & Jackson, M. (2005). An unmanned aerial vehicle for rangeland photography. Rangeland Ecology & Management,
58, 439–442.
Article
Google Scholar
Hardin, P. J., Jackson, M. W., Anderson, V. J., & Johnson, R. (2007). Detecting squarrose knapweed (Centaurea virgata Lam. Ssp. Squarrosa Gugl.) using a remotely piloted vehicle: A Utah case study. GIScience & Remote Sensing,
44, 203–219.
Article
Google Scholar
Hardin, P. J., & Jensen, R. R. (2011). Small-scale unmanned aerial vehicles in environmental remote sensing: Challenges and opportunities. GIScience & Remote Sensing,
48, 99–111.
Article
Google Scholar
Hinkleya, E. A., & Zajkowski, T. (2011). USDA forest service-NASA: Unmanned aerial systems demonstrations-pushing the leading edge in fire mapping. Geocarto International,
26, 103–111.
Article
Google Scholar
Huang, Y., Lan, Y., Hoffmann, W. C., & Fritz, B. K. (2008). Development of an unmanned aerial vehicle-based remote sensing system for site-specific management in precision agriculture. In Proceedings of the 9th International Symposium on Precision Agriculture. Denver, CO. CDROM.
Hunt, E. R., Cavigelli, M., Daughtry, C. S. T., McMurtrey, J. E., & Walthall, C. L. (2005). Evaluation of digital photography from model aircraft for remote sensing of crop biomass and nitrogen status. Precision Agriculture,
6, 359–378.
Article
Google Scholar
Hunt, E. R., Daughtry, C. S., Walthall, C. L., McMurtrey, J. E., & Dulaney, W. P. (2003). Agricultural remote sensing using radio-controlled aircraft. In: T. VanToai, D. Major, M. McDonald, J. Schepers & L. Tarpley (Eds.). Digital image and spectral techniques: Applications to precision agriculture and crop physiology. ASA Special Publications Number 66. Madison, WI, USA: American Society of Agronomy, pp. 197–205.
Hunt, E. R., Hively, W. D., Daughtry, C. S., McCarty, G. W., Fujikawa, S. J., Ng, T. L., Tranchitella, M., Linden, D. S., & Yoel, D. W. (2008). Remote sensing of crop leaf area index using unmanned airborne vehicles. In ASPRS Pecora 17 Conference Proceeding, Bethesda, MD: American Society for Photogrammetry and Remote Sensing. CDROM. Retrieved March 12, 2012 from http://www.asprs.org/a/publications/proceedings/pecora17/0018.pdf.
Hunt, E. R., Hively, W. D., Fujikawa, S. J., Linden, D. S., Daughtry, C. S. T., & McCarty, G. W. (2010). Acquisition of NIR-green-blue digital photographs from unmanned aircraft for crop monitoring. Remote Sensing,
2, 290–305.
Article
Google Scholar
Inoue, Y., Morinaga, S., & Tomita, A. (2000). A blimp-based remote sensing system for low-altitude monitoring of plant variables: A preliminary experiment for agricultural and ecological applications. International Journal of Remote Sensing,
21, 379–385.
Article
Google Scholar
Jackson, R. D. (1984). Remote sensing of vegetation characteristics for farm management. Proceedings of the Society of Photo-Optical Instrumentation Engineers,
475, 81–96.
Google Scholar
Johnson, L. F., Herwitz, S. R., Lobitz, B. M., & Dunagan, S. E. (2004). Feasibility of monitoring coffee field ripeness with airborne multispectral imagery. Applied Engineering in Agriculture,
20, 845–849.
Google Scholar
Jones, G. P., Pearlstine, L. G., & Percival, H. F. (2006). An assessment of small unmanned aerial vehicles for wildlife research. Wildlife Society Bulletin,
34, 750–758.
Article
Google Scholar
Kendoul, F., Lara, D., Fantoni-Coichot, I., & Lozano, R. (2007). Real-time nonlinear embedded control for an autonomous quadrotor helicopter. Journal of Guidance Control and Dynamics,
30, 1049–1061.
Article
Google Scholar
Laliberte, A. S., Herrick, J. E., & Rango, A. (2010). Acquisition, orthorectification, and object-based classification of unmanned aerial vehicle (UAV) imagery for rangeland monitoring. Photogrammetric Engineering and Remote Sensing,
76, 661–672.
Google Scholar
Laliberte, A. S., & Rango, A. (2009). Texture and scale in object-based analysis of sub-decimeter resolution unmanned aerial vehicle (UAV) imagery. IEEE Transactions on Geoscience and Remote Sensing, Special Issue on UAV Sensing Systems in Earth Observation,
47, 761–770.
Google Scholar
Laliberte, A. S., & Rango, A. (2011). Image processing and classification procedures for analysis of sub-decimeter imagery acquired with an unmanned aircraft over arid rangelands. GIScience & Remote Sensing,
48, 4–23.
Article
Google Scholar
Laliberte, A. S., Rango, A., & Fredrickson, E. L. (2005). Multi-scale, object-oriented analysis of QuickBird imagery for determining percent cover in arid land vegetation. In: 20th Biennial Workshop on Aerial Photography, Videography, and High Resolution Digital Imagery for Resource Assessment. Weslaco, TX. CDROM. Retrieved March 12, 2012 from https://jornada.nmsu.edu/bibliography/05-055Proc.pdf.
Laliberte, A. S., Rango, A., & Herrick, J. (2007). Unmanned aerial vehicles for rangeland mapping and monitoring: a comparison of two systems. In Proceeding of ASPRS 2007 Annual Conference. Tampa, FL. CDROM. Retrieved March 12, 2012 from http://www.asprs.org/a/publications/proceedings/tampa2007/0039.pdf.
Lamb, J. A., Anderson, J. L., Malzer, G. L., Vetch, J. A., Dowdy, R. H., Onken, D. S., et al. (1995). Perils of monitoring grain yield on-the-go. In P. C. Robert, R. H. Rust, & W. E. Larson (Eds.), Site-specific management for agricultural systems (pp. 87–90). Madison: American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America.
Google Scholar
Lamb, D. W., & Brown, R. B. (2001). Remote-sensing and mapping of weeds in crops. Journal of Agricultural Engineering Research,
78, 117–125.
Article
Google Scholar
Lamb, D. W., Frazier, P., & Adams, P. (2008). Improving pathways to adoption: Putting the right P’s in precision agriculture. Computers and Electronics in Agriculture,
61, 4–9.
Article
Google Scholar
Lambert, D., & Lowenberg-Deboer, J. (2000). Precision agriculture profitability review (p. 154). Purdue, USA: Site Specific Management Center.
Lan, Y., Huang, Y., Martin, D. E., & Hoffmann, W. C. (2009). Development of an airborne remote sensing system for crop pest management: System integration and verification. Transactions of the ASABE,
25, 607–615.
Google Scholar
Lelong, C. C. D., Burger, P., Jubelin, G., Roux, B., Labbe, S., & Barett, F. (2008). Assessment of unmanned aerial vehicles imagery for quantitative monitoring of wheat crop in small plots. Sensors,
8, 3557–3585.
Article
Google Scholar
Lelong, C. C. D., Pinet, P. C., & Poilvé, H. (1998). Hyperspectral imaging and stress mapping in agriculture: A case study on wheat in Beauce (France). Remote Sensing of Environment,
66, 179–191.
Article
Google Scholar
Lewis, G. (2007). Evaluating the use of a low-cost unmanned aerial vehicle platform in acquiring digital imagery for emergency response. In J. Li, S. Zlatanova, & A. Fabbri (Eds.), Geomatics solutions for disaster management (pp. 117–133). Berlin: Springer.
Chapter
Google Scholar
Long, D. S., Carlson, G. R., & DeGloria, S. D. (1995). Quality of field management maps. In P. C. Robert (Ed.), Proceedings of Site-Specific Management for Agriculture Systems (pp. 251–271). Madison: American Society of Agronomy.
Google Scholar
Lopez-Lozano, R., Baret, F., de Cortazar-Atauri, I. G., Bertrand, N., & Casterad, M. A. (2009). Optimal geometric configuration and algorithms for LAI indirect estimates under row canopies: The case of vineyards. Agricultural and Forest Meteorology,
149, 1307–1316.
Article
Google Scholar
Lorenzen, B., & Jensen, A. (1989). Changes in leaf spectral properties induced in barley by cereal powdery mildew. Remote Sensing of Environment,
27, 201–209.
Article
Google Scholar
MacArthur, E. Z., MacArthur, D., & Crane, C. (2005). Use of cooperative unmanned air and ground vehicles for detection and disposal of mines. Proceedings of SPIE-The International Society for Optical Engineering,
5999, 94–101.
Google Scholar
Maldonado-Ramirez, S. L., Schmale, D. G., Shields, E. J., & Bergstrom, G. C. (2005). The relative abundance of viable spores of Gibberella zeae in the planetary boundary layer suggests the role of long-distance transport in regional epidemics of Fusarium head blight. Agricultural and Forest Meteorology,
132, 20–27.
Article
Google Scholar
Malthus, T. J., & Maderia, A. C. (1993). High resolution spectroradiometry: Spectral reflectance of field bean leaves infected by Botrytis fabae. Remote Sensing of Environment,
45, 107–116.
Article
Google Scholar
McBratney, A., Whelan, B., & Ancev, T. (2005). Future directions of precision agriculture. Precision Agriculture,
6, 7–23.
Article
Google Scholar
McBratney, A. B., Whelan, B. M., & Shatar, T. (1997). Variability and uncertainty in spatial, temporal and spatio-temporal crop yield and related data. In: Precision agriculture: Spatial and temporal variability of environmental quality. Chichester: Wiley, pp. 141–160
McNairn, H., & Brisco, B. (2004). The application of C-band polarimetric SAR for agriculture: A review. Canadian Journal of Remote Sensing,
30, 525–542.
Article
Google Scholar
Monmonier, M. (2002). Aerial photography at the Agricultural Adjustment Administration: Acreage controls, conservation. Photogrammetric Engineering & Remote Sensing,
68, 1257–1261.
Google Scholar
Moran, M. S., Inoue, Y., & Barnes, E. M. (1997). Opportunities and limitation for image-based remote sensing in precision crop Management. Remote Sensing of Environment,
61, 319–346.
Article
Google Scholar
Murakami, E., Saraiva, A. M., Ribeiro, L. C. M., Cugnasca, C. E., Hirakawa, A. R., & Correa, P. L. P. (2007). An infrastructure for the development of distributed service-oriented information systems for precision agriculture. Computers and Electronics in Agriculture,
58, 37–48.
Article
Google Scholar
Pena-Barragan, J. M., Lopez-Granados, F., Garcia-Torres, L., Jurado-Exposito, M., de la Orden, M. S., & Garcia-Ferrer, A. (2008). Discriminating cropping systems and agro-environmental measures by remote sensing. Agronomy for Sustainable Development,
28, 355–362.
Article
Google Scholar
Price, P. (2004). Spreading the PA message. Ground Cover, Issue 51 Grains Research and Development Corporation: Canberra, Australia Capital Territory, Australia.
Primicerio, J., Gennaro, S. F. D., Fiorillo, E., Genesio, L., Lugato, E., Matese, A., et al. (2012). A flexible unmanned aerial vehicle for precision agriculture. Precision Agriculture (Online first),. doi:10.1007/s11119-012-9257-6.
Google Scholar
Quilter, M. C. (1997). Vegetation monitoring using low altitude, large scale imagery from radio controlled drones. PhD dissertation, Department of Botany and Range Science, Brigham Young University, Provo, UT, USA
Quilter, M. C., & Anderson, V. J. (2000). Low altitude/large scale aerial photographs: A tool for range and resource managers. Rangelands,
22, 13–17.
Google Scholar
Quilter, M. C., & Anderson, V. J. (2001). A proposed method for determining shrub utilization using (LA/LS) imagery. Journal of Range Management,
54, 378–381.
Article
Google Scholar
Rango, A., & Laliberte, A. S. (2010). Impact of flight regulations on effective use of unmanned aerial vehicles for natural resources applications. Journal of Applied Remote Sensing,
4, 043539.
Article
Google Scholar
Rango, A., Laliberte, A. S., Herrick, J. E., Winters, C., Havstad, K., Steele, C., et al. (2009). Unmanned aerial vehicle-based remote sensing for rangeland assessment, monitoring, and management. Journal of Applied Remote Sensing,
3, 033542.
Article
Google Scholar
Rao, N. R., Garg, P. K., & Ghosh, S. K. (2007). Development of an agricultural crops spectral library and classification of crops at cultivar level using hyperspectral data. Precision Agriculture,
8, 173–185.
Article
Google Scholar
Rao, N. R., Garg, P. K., Ghosh, S. K., & Dadhwal, V. K. (2008). Estimation of leaf total chlorophyll and nitrogen concentrations using hyperspectral satellite imagery. Journal of Agricultural Science,
146, 65–75.
CAS
Google Scholar
Robert, P.C. (1996). Use of remote sensing imagery for precision farming. In: Proceedings of 26th International Symposium on Remote Sensing of Environment and 18th symposium of the Canadian Remote Sensing Society, Ontario, Canada, pp. 596–599.
Robertson, M., Carberry, P., & Brennan, L. (2007). The economic benefits of precision agriculture: cast studies from Australia grain farms. Retrieved March 12, 2012 from http://www.grdc.com.au/uploads/documents/Economics%20of%20Precision%20agriculture%20Report%20to%20GRDC%20final.pdf.
Nebiker, S. Annen, A., Scherrer, M., & Oesch, D. (2008). A light-weight multispectral sensor for micro UAV: Opportunities for very high resolution airborne remote sensing. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. Vol. XXXVII. Part B1., pp. 1193–1200
Schmale, D. G., Dingus, B. R., & Reinholtz, C. (2008). Development and application of an autonomous aerial vehicle for precise aerobiological sampling above agricultural fields. Journal of Field Robotics,
25, 133–147.
Article
Google Scholar
Scotford, I. M., & Miller, P. C. H. (2005). Applications of spectral reflectance techniques in Northern European cereal production: A review. Biosystems Engineering,
90, 235–250.
Article
Google Scholar
Seang, T. P., & Mund, J. (2006). Balloon based geo-referenced digital photo technique: a low cost high-resolution option for developing countries. In Proceedings of XXIII FIG Congress. Munich, Germany. CDROM. Retrieved March 12, 2012 from http://www.fig.net/pub/fig2006/papers/ts73/ts73_02_mund_peng_0425.pdf.
Seelan, S. K., Laguette, S., Casady, G. M., & Seielstad, G. A. (2003). Remote sensing applications for precision agriculture: A learning community approach. Remote Sensing of Environment,
88, 157–169.
Article
Google Scholar
Shou, L., Jia, L. L., Cui, Z. L., Chen, X. P., & Zhang, F. S. (2007). Using high-resolution satellite imaging to evaluate nitrogen status of winter wheat. Journal of Plant Nutrition,
30, 1669–1680.
Article
CAS
Google Scholar
Silva, C. B., Vale, S. M. L. R., Pinto, F. A. C., Muller, C. A. S., & Moura, A. D. (2007). The economic feasibility of precision agriculture in Mato Grosso do Sul State, Brazil: A case study. Precision Agriculture,
8, 255–265.
Article
Google Scholar
Song, X., Wang, J., Huang, W., Liu, L., Yan, G., & Pu, R. (2009). The delineation of agricultural management zones with high resolution remotely sensed data. Precision Agriculture,
10, 471–487.
Article
Google Scholar
Stafford, J. V. (2000). Implementing precision agriculture in the 21st century. Journal of Agricultural Engineering Research,
76, 267–275.
Article
Google Scholar
Sugiura, R., Ishii, K., & Noguchi, N. (2004). Remote sensing technology for field information using an unmanned helicopter. In Proceedings of Automation Technology for Off-road Equipment. Paper No. 701P1004. ASABE, St Joseph, MI, USA.
Sugiura, R., Noguchi, N., Ishii, K., & Terao, H. (2002). The development of remote sensing system using unmanned helicopter. In Proceedings of Automation Technology for Off-road Equipment, 120–128. Paper No. 701P0502. ASABE, St Joseph, MI, USA.
Sullivan, D. G., Shaw, J. N., & Rickman, D. (2005). IKONOS imagery to estimate surface soil property variability in two Alabama physiographies. Soil Science Society of America Journal,
69, 1789–1798.
Article
CAS
Google Scholar
Swain, K. C., Jayasuriya, H. P. W., & Salokhe, V. M. (2007). Suitability of low-altitude remote sensing images for estimating nitrogen treatment variations in rice cropping for precision agriculture adoption. Journal of Applied Remote Sensing,
1, 013547.
Article
Google Scholar
Swain, K. C., Thomson, S. J., & Jayasuriya, H. P. W. (2010). Adoption of an unmanned helicopter for low-altitude remote sensing to estimate yield and total biomass of a rice crop. Transactions of the ASABE,
53, 21–27.
Google Scholar
Tenkorang, F., & DeBoer, L. (2007). On-farm profitability of remote sensing in agriculture. Journal of Terrestrial Observation,
1, 50–59.
Google Scholar
Tomlins, G. F. (1983). Some considerations in the design of low-cost remotely-piloted aircraft for civil remote sensing applications. The Canadian Surveyor,
37, 157–167.
Google Scholar
Torbett, J. C., Roberts, R. K., Larson, J. A., & English, B. C. (2008). Perceived improvements in nitrogen fertilizer efficiency from cotton precision farming. Computers and Electronics in Agriculture,
64, 140–148.
Article
Google Scholar
Vericat, D., Brasington, J., Wheaton, J., & Cowie, M. (2008). Accuracy assessment of aerial photographs acquired using lighter-than-air blimps: Low-cost tools for mapping river corridors. River Research and Applications,
25, 985–1000.
Article
Google Scholar
Warren, G., & Metternicht, G. (2005). Agricultural applications of high-resolution digital multispectral imagery: Evaluating within-field spatial variability of canola (Brassica napus) in Western Australia. Photogrammetric Engineering and Remote Sensing,
71, 595–602.
Google Scholar
Whipker, L. D., & Akridge, J. T. (2009). Precision agricultural services dealership survey results. Retrieved March 12, 2012 from http://www.agecon.purdue.edu/cab/research_articles/articles/2009_crop_life_precision_report.pdf.
Wu, C., Niu, Z., Tang, Q., & Huang, W. (2008). Estimating chlorophyll content from hyperspectral vegetation indices: Modeling and validation. Agricultural and Forest Meteorology,
148, 1230–1241.
Article
Google Scholar
Wu, J. D., Wang, D., & Bauer, M. E. (2007a). Assessing broadband vegetation indices and QuickBird data in estimating leaf area index of corn and potato canopies. Field Crops Research,
102, 33–42.
Article
Google Scholar
Wu, J. D., Wang, D., & Rosen, C. J. (2007b). Comparison of petiole nitrate concentrations, SPAD chlorophyll readings, and QuickBird satellite imagery in detecting nitrogen status of potato canopies. Field Crops Research,
101, 96–103.
Article
Google Scholar
Wundram, D., & Loffler, J. (2007). Kite aerial photography in high mountain ecosystem research. Grazer Schriften der Geographie und Raumforschung,
43, 15–22.
Google Scholar
Xiang, H., & Tian, L. (2011). Method for automatic georeferencing aerial remote sensing (RS) images from an unmanned aerial vehicle (UAV) platform. Biosystems Engineering,
108, 104–113.
Article
Google Scholar
Yang, C., Bradford, J. M., & Wiegand, C. L. (2001). Airborne multispectral imagery for mapping variable growing conditions and yields of cotton, grain sorghum, and corn. Transactions of the ASAE,
44, 1983–1994.
Google Scholar
Yang, C. H., Everitt, J. H., & Bradford, J. M. (2006). Comparison of QuickBird satellite imagery and airborne imagery for mapping grain sorghum yield patterns. Precision Agriculture,
7, 33–44.
Article
Google Scholar
Zarco-Tejada, P. J., Gonzalez-Dugo, V., & Berni, J. A. J. (2012). Fluorescence, temperature and narrow-band indices acquired from a UAV platform for water stress detection using a micro-hyperspectral imager and a thermal camera. Remote Sensing of Environment,
117, 322–337.
Article
Google Scholar
Zhang, J. H., Wang, K., Bailey, J. S., & Wang, R. C. (2006). Predicting nitrogen status of rice using multispectral data at canopy scale. Pedosphere,
16, 108–117.
Article
CAS
Google Scholar
Zhao, D. H., Huang, L. M., Li, J. L., & Qi, J. G. (2007). A comparative analysis of broadband and narrowband derived vegetation indices in predicting LAI and CCD of a cotton canopy. ISPRS Journal of Photogrammetry and Remote Sensing,
62, 25–33.
Article
Google Scholar
Zhou, G. (2009). Near real-time ortho rectification and mosaic of small UAV flow for time-critical event response. IEEE Transactions on Geoscience and Remote Sensing,
47, 739–747.
Article
Google Scholar