Precision Agriculture

, Volume 13, Issue 3, pp 393–410 | Cite as

Spatial variability in grape yield and quality influenced by soil and crop nutrition characteristics

  • J. ArnóEmail author
  • J. R. Rosell
  • R. Blanco
  • M. C. Ramos
  • J. A. Martínez-Casasnovas


Knowledge of spatial variability of soil fertility and plant nutrition is critical for planning and implementing site-specific vineyard management. To better understand the key drivers behind vineyard variability, yield mapping from 2002 to 2005 and 2007 (the monitor broke down in 2006) was used to identify zones of different productive potential in a Pinot Noir field located in Raimat (Lleida, Spain). Simultaneously, the vineyard field was sampled in 2002, 2003 and 2007, applying three different schemes (depending on the number of target vines in different grape yield zones). The sampling carried out in 2002, which involved different soil, topographic and crop properties (mineral contents in petiole), made it possible to evaluate the influence of these parameters on the grape yield variability. The zones of lowest yield coincided with locations in which the nutritional status of the crop exhibited the lowest values, particularly with respect to petiole contents of calcium and manganese. Sampling systems adopted in 2003 and 2007 (grape quality and soil attributes) confirmed the inverse spatial correlation between grape yield and some grape quality parameters and, more importantly, showed that the percentage of soil carbonates had a great influence on grape quality probably due to the reduced availability of manganese in calcareous soils. Site-specific vineyard management could therefore be considered using two different strategies: variable-rate application of foliar fertilizers to increase the yield in areas with low production and also foliar or soil fertilizers to improve the quality specifications in some areas.


Grape yield maps Grape quality Vineyard variability Multi-variate statistics Spain 



The authors would like to thank the Codorníu Group for the trust and confidence that it has placed in this research and for providing the authors with the opportunity to carry out this work through a collaboration programme.


  1. Acevedo-Opazo, C., Tisseyre, B., Guillaume, S., & Ojeda, H. (2008). The potential of high spatial resolution information to define within-vineyard zones related to vine water status. Precision Agriculture, 9, 285–302.CrossRefGoogle Scholar
  2. Arnó, J., Bordes, X., Ribes-Dasi, M., Blanco, R., Rosell, J. R., & Esteve, J. (2005). Obtaining grape yield maps and analysis of within-field variability in Raimat (Spain). In: J. V. Stafford (Eds.) Precision Agriculture’05. Proceedings of the 5th European conference on precision agriculture (pp. 899–906). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  3. Arno, J., Martínez-Casasnovas, J. A., Ribes-Dasi, M., & Rosell, J. R. (2011). Clustering of grape yield maps to delineate site-specific management zones. Spanish Journal of Agricultural Research, 9(3), 721–729.Google Scholar
  4. Bramley, R. G. V. (2001). Variation in the yield and quality of winegrapes and the effect of soil property variation in two contrasting Australian vineyards. In: G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 767–772). France: Agro Montpellier.Google Scholar
  5. Bramley, R. G. V. (2005). Understanding variability in winegrape production systems. 2. Within vineyard variation in quality over several vintages. Australian Journal of Grape and Wine Research, 11, 33–42.CrossRefGoogle Scholar
  6. Bramley, R. G. V., & Hamilton, R. P. (2004). Understanding variability in winegrape production systems. 1. Within vineyard variation in yield over several vintages. Australian Journal of Grape and Wine Research, 10, 32–45.CrossRefGoogle Scholar
  7. Bramley, R. G. V., & Hamilton, R. P. (2007). Terroir and precision viticulture: are they compatible? Journal International des Sciences de la Vigne et du Vin, 41(1), 1–8.Google Scholar
  8. Bramley, R.G.V., & Lamb, D.W. (2003). Making sense of vineyard variability in Australia. In R. Ortega & A. Esser (Eds.), Precision viticulture. Proceedings of the IX Congreso Latinoamericano de Viticultura y Enología (pp. 35–54). Santiago, Chile: Pontificia Universidad Católica.Google Scholar
  9. Bramley, R. G. V., Ouzman, J., & Boss, P. K. (2011). Variation in vine vigour, grape yield and vineyard soils and topography as indicators of variation in the chemical composition of grapes, wine and wine sensory attributes. Australian Journal of Grape and Wine Research, 17, 217–229.CrossRefGoogle Scholar
  10. Bramley, R., & Proffitt, T. (1999). Managing variability in viticultural production. The Australian Grapegrower & Winemaker, 427, 11–16.Google Scholar
  11. Bramley, R. G. V. & Williams, S. K. (2001). A protocol for winegrape yield maps. In G. Grenier & S. Blackmore (Eds.) Proceedings of the 3rd European conference on precision agriculture (pp 773–778). France: Agro Montpellier.Google Scholar
  12. Hall, A., Lamb, D. W., Holzapfel, B. P., & Louis, J. P. (2010). Within-season temporal variation in correlations between vineyard canopy and winegrape composition and yield. Precision Agriculture, 12, 103–117. doi: 10.1007/s11119-010-9159-4.CrossRefGoogle Scholar
  13. Hidalgo, J. (2006). La calidad del vino desde el viñedo (The quality of wine from the vineyard). Madrid, Spain: Mundi-Prensa.Google Scholar
  14. Hosmer, D. W., & Lemeshow, S. (1989). Applied logistic regression. New York: Wiley.Google Scholar
  15. Iland, P., Bruer, N., Edwards, G., Weeks, S., & Wilkes, E. (2004). Chemical analysis of grapes and wine: techniques and concepts. Campbelltown, South Australia: Patrick Iland Wine Promotions.Google Scholar
  16. Mallarino, A. P., Oyarzabal, E. S., & Hinz, P. N. (1999). Interpreting within-field relationships between crop yields and soil and plant variables using factor analysis. Precision Agriculture, 1, 15–25.CrossRefGoogle Scholar
  17. Manly, B. F. J. (1994). Multivariate statistical methods. A primer. London, England: Chapman & Hall.Google Scholar
  18. Martínez-Casasnovas, J. A., & Bordes, X. (2005). Viticultura de precisión: Predicción de cosecha a partir de variables del cultivo e índices de vegetación (Precision Viticulture. Predicting grape yield from crop variables and vegetation indices). Revista de Teledetección, 24, 67–71.Google Scholar
  19. Minasny, B., McBratney, A. B., & Whelan, B. M. (2005). VESPER version 1.62. Australian Centre for Precision Agriculture. Accessed 1 Dec 2011.
  20. Ortega, R. A., Esser, A., & Santibáñez, O. (2003). Spatial variability of wine grape yield and quality in Chilean vineyards: economic and environmental impacts. In J. Stafford, A. Werner (Eds.), Precision agriculture. Proceedings of the 4th European conference on precision agriculture (pp. 499–506). Wageningen, The Netherlands: Wageningen Academic Publishers.Google Scholar
  21. Santesteban, L. G., Miranda, C., Jiménez, C., Fuentemilla, M., Urretavizcaya, I., Tisseyre, B., et al. (2010). Evaluation of the interest of NDVI to identify distinct management units in vineyards. Revista de Teledetección, 33, 11–16. [In Spanish].Google Scholar
  22. Tardaguila, J., Baluja, J., Arpon, L., Balda, P., & Oliveira, M. (2011). Variations of soil properties affect the vegetative growth and yield components of “Tempranillo” grapevines. Precision Agriculture, 12, 762–773.CrossRefGoogle Scholar
  23. Taylor, J.A. (2004). Digital terroirs and precision viticulture: Investigations into the application of information technology in Australian vineyards. PhD Thesis, The University of Sydney, Australia.Google Scholar
  24. Tisseyre, B., Mazzoni, C., Ardoin, N., & Clipet, C. (2001). Yield and harvest quality measurement in precision viticulture—Application for a selective vintage. In: G. Grenier & S. Blackmore (Eds.), Proceedings of the 3rd European conference on precision agriculture (pp. 133–138). France: Agro Montpellier.Google Scholar
  25. Tisseyre, B., Mazzoni, C., & Fonta, H. (2008). Within-field temporal stability of some parameters in viticulture: Potential toward a site specific management. International Journal of Wine and Vine Research, 42, 27–39.Google Scholar
  26. Tisseyre, B., Taylor, J., & Ojeda, H. (2007). New technologies and methodologies for site-specific viticulture. International Journal of Wine and Vine Research, 41, 63–76.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • J. Arnó
    • 1
    Email author
  • J. R. Rosell
    • 1
  • R. Blanco
    • 2
  • M. C. Ramos
    • 3
  • J. A. Martínez-Casasnovas
    • 3
  1. 1.Department of Agro-forestry EngineeringUniversity of LleidaLleidaSpain
  2. 2.Department of Crop and Forest ScienceUniversity of LleidaLleidaSpain
  3. 3.Department of Environment and Soil SciencesUniversity of LleidaLleidaSpain

Personalised recommendations