Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields

Abstract

Nitrogen management has been intensively studied on several crops and recently associated with variable rate on-the-go application based on crop sensors. Such studies are scarce for sugarcane and as a biofuel crop the energy input matters, seeking high positive energy balance production and low carbon emission on the whole production system. This article presents the procedure and shows the first results obtained using a nitrogen and biomass sensor (N-Sensor ALS, Yara International ASA) to indicate the nitrogen application demands of commercial sugarcane fields. Eight commercial fields from one sugar mill in the state of São Paulo, Brazil, varying from 15 to 25 ha in size, were monitored. Conditions varied from sandy to heavy soils and the previous harvesting occurred in May and October 2009, including first, second, and third ratoon stages. Each field was scanned with the sensor three times during the season (at 0.2, 0.4, and 0.6 m stem height), followed by tissue sampling for biomass and nitrogen uptake at ten spots inside the area, guided by the different values shown by the sensor. The results showed a high correlation between sensor values and sugarcane biomass and nitrogen uptake, thereby supporting the potential use of this technology to develop algorithms to manage variable rate application of nitrogen for sugarcane.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. ANFAVEA (2010). Associação Nacional dos Fabricantes de Veículos Automotores—Brasil. http://www.anfavea.com.br/tabelas.html. Accessed 16 September 2010.

  2. BEN (2010). Balanço Energético Nacional—Brasil. https://www.ben.epe.gov.br/downloads/Relatorio_Final_BEN_2010.pdf. Accessed 16 September 2010.

  3. Boddey, R. M., Urquiaga, S., Alves, B. J. R., & Reis, V. (2003). Endophytic nitrogen fixation in sugarcane: present knowledge and future applications. Plant and Soil, 252, 139–149.

    Article  CAS  Google Scholar 

  4. Bredemeier, C., & Schmidhalter, U. (2005). Laser-induced chlorophyll fluorescence sensing to determine biomass and nitrogen uptake of winter wheat under controlled environment and field conditions. In J. V. Stafford (Ed.), Precision agriculture’05. Proceedings of the 5th European conference on precision agriculture (pp. 273–280). Wageningen, The Netherlands, Uppsala, Sweden: Academic Publishers.

    Google Scholar 

  5. FAO (2010). Food and Agriculture Organization, Faostat. http://faostat.fao.org/. Accessed 16 September 2010.

  6. Franco, H. C. J., Trivelin, P. C. O., Faroni, C. E., Vitti, A. C., & Otto, R. (2010). Stalk yield and technological attributes of planted cane as related to nitrogen fertilization (Produção de colmos e atributos tecnológicos da cana planta relacionados com a adubação nitrogenada). Scientia Agricola, 67, 579–590.

    Article  Google Scholar 

  7. Heege, H. J., Reusch, S., & Thiessen, E. (2008). Prospects and results for optical systems for site-specific on-the-go control of nitrogen-top-dressing in Germany. Precision Agriculture, 9, 115–131. doi:10.1007/s11119-008-9055-3.

    Article  Google Scholar 

  8. Jasper, J., Reusch, S., & Link, A. (2009). Active sensing of the N status of wheat using optimized wavelength combination–impact of seed rate, variety and growth stage. In E. J. Van Henten, D. Goense, & C. Lokhorst (Eds.), Precision agriculture’09 Proceedings of the 7th European conference on precision agriculture (pp. 23–30). Wageningen, The Netherlands: Academic Publishers.

    Google Scholar 

  9. Link, A., Jasper, J., & Reusch, S. (2005). Suitability of different crop parameters for the determination of site-specific nitrogen fertilizer demand. In J. V. Stafford (Ed.), Precision agriculture′05. Proceedings of the 5th European conference on precision agriculture (pp. 297–302). Wageningen, The Netherlands. Uppsala, Sweden: Academic Publishers.

    Google Scholar 

  10. Mutanga, O., & Skidmore, A. K. (2004). Narrow band vegetation indices overcome the saturation problem in biomass estimation. International Journal of Remote Sensing, 25, 3999–4014. doi:10.1080/01431160310001654923.

    Article  Google Scholar 

  11. Ometto, R. A., Hauschild, M. Z., & Roma, W. N. L. (2009). Lifecycle assessment of fuel ethanol from sugarcane in Brazil. International Journal of Life Cycle Assessment, 14, 236–247. doi:10.1007/s11367-009-0065-9.

    Article  CAS  Google Scholar 

  12. Prado, R. M., & Pancelli, M. A. (2008). Sugarcane ratoon response to nitrogen application in a no burn harvesting system. (Resposta de soqueiras de cana-de-açúcar à aplicação de nitrogénio em sistema de colheita sem queima). Bragantia, 67, 951–959.

    Article  CAS  Google Scholar 

  13. Reusch, S. (2005). Optimum waveband selection for determining the nitrogen uptake in winter wheat by active remote sensing. In J. V. Stafford (Ed.), Proceedings of the 5th European conference on precision agriculture (pp. 261–266). Wageningen, The Netherlands: Academic Publishers.

    Google Scholar 

  14. SAS. (2009). SAS Online Doc R 9.2. North Carolina: Cary.

    Google Scholar 

  15. Silva, C. B., de Moraes, M. A. F. D., & Molin, J. P. (2011). Adoption and use of precision agriculture technologies in the sugarcane industry of São Paulo state, Brazil. Precision Agriculture, 12, 67–81. doi:10.1007/s11119-009-9155-8.

    Article  Google Scholar 

  16. Singh, I., Srivastava, A. K., Chandna, P., & Gupta, R. K. (2006). Crop sensors for efficient nitrogen management in sugarcane: Potential and constraints. Sugar Technology, 8, 299–302. doi:10.1007/bf02943572.

    Article  CAS  Google Scholar 

  17. Solie, J. B., Raun, W. R., & Stone, M. L. (1999). Submeter spatial variability of selected soil and bermudagrass production variables. Soil Science Society of America Journal, 63, 1724–1733.

    Article  CAS  Google Scholar 

  18. Spiertz, J. H. J. (2010). Nitrogen, sustainable agriculture and food security. A review. Agronomy for Sustainable Development, 30, 43–55. doi:10.1051/agro:2008064.

    Article  CAS  Google Scholar 

  19. UNICA (2010). União da Indústria de cana-de-açúcar—Brasil. Union of the Brazilian sugarcane industry. http://www.unica.com.br/dadosCotacao/estatistica/. Accessed 16 September 2010.

  20. Vitti, A. C., Trivelin, P. C. O., Gava, G. J. C., Penatti, C. P., Bologna, I. R., Faroni, C. E., et al. (2007). Sugarcane yield related to the residual nitrogen from fertilization and the root system (Produtividade da cana-de-açúcar relacionada ao nitrogênio residual da adubação e do sistema radicular). Pesquisa Agropecuaria Brasileira, 42, 249–256.

    Article  Google Scholar 

Download references

Acknowledgments

All this work would not be possible without the collaboration of São Martinho’s Mill team, the support of Máquinas Agrícolas Jacto SA and the Research Fellowship to the first author from the Brazilian Government (CNPq—National Council of Scientific and Technological Development).

Author information

Affiliations

Authors

Corresponding author

Correspondence to J. P. Molin.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Portz, G., Molin, J.P. & Jasper, J. Active crop sensor to detect variability of nitrogen supply and biomass on sugarcane fields. Precision Agric 13, 33–44 (2012). https://doi.org/10.1007/s11119-011-9243-4

Download citation

Keywords

  • Nitrogen management
  • Optical sensing
  • Reflectance
  • Yara N-Sensor