Skip to main content
Log in

Besov-Orlicz Path Regularity of Non-Gaussian Processes

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In the article, Besov-Orlicz regularity of sample paths of stochastic processes that are represented by multiple integrals of order \(n\in \mathbb {N}\) is treated. We assume that the considered processes belong to the Hölder space

$$ C^{\alpha}([0,T];L^{2}({\Omega}))\quad\text{with}\quad \alpha\in (0,1), $$

and we give sufficient conditions for them to have paths in the exponential Besov-Orlicz space

$$ B_{{\varPhi}_{2/n},\infty}^{\alpha}(0,T)\qquad \text{with}\qquad {\varPhi}_{2/n}(x)=\mathrm{e}^{x^{2/n}}-1. $$

These results provide an extension of what is known for scalar Gaussian stochastic processes to stochastic processes in an arbitrary finite Wiener chaos. As an application, the Besov-Orlicz path regularity of fractionally filtered Hermite processes is studied. But while the main focus is on the non-Gaussian case, some new path properties are obtained even for fractional Brownian motions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ayache, A.: Lower bound for local oscillations of Hermite processes. Stoch. Proc. Appl. 130, 4593–4607 (2020)

    Article  MathSciNet  Google Scholar 

  2. Aziznejad, S., Fageot, J.: Wavelet analysis of the Besov regularity of Lévy white noise. Electron. J. Probab. 25, 1–38 (2020)

    Article  Google Scholar 

  3. Bai, S., Taqqu, M.S.: Generalized Hermite processes, discrete chaos and limit theorems. Stoch. Proc. Appl. 124, 1710–1739 (2014)

    Article  MathSciNet  Google Scholar 

  4. Beśka, M., Ciesielski, Z.: Gebelein’s inequality and its consequences. In: Approximation and Probability, vol. 72 of Banach Center Publ., Polish Academy of Sciences, Warsaw, pp. 11–23 (2006)

  5. Boufoussi, B., Nachit, Y.: On Besov regularity of the bifractional Brownian motion. Probab. Math. Statist. 41, 303–320 (2021)

    MathSciNet  Google Scholar 

  6. Ciesielski, Z.: Modulus of smoothness of the Brownian paths in the Lp norm. In: Constructive theory of functions, Varna, Bulgaria, pp. 71–75 (1991)

  7. Ciesielski, Z.: Orlicz spaces, spline systems, and Brownian motion. Constr. Approx. 9, 191–208 (1993)

    Article  MathSciNet  Google Scholar 

  8. Fageot, J., Fallah, A., Unser, M.: Multidimensional Lévy white noise in weighted Besov spaces. Stoch. Proc. Appl. 127, 1599–1621 (2017)

    Article  Google Scholar 

  9. Fageot, J., Unser, M., Ward, J.P.: On the Besov regularity of periodic Lévy noises. Appl. Comput. Harmon. Anal. 42, 21–36 (2017)

    Article  MathSciNet  Google Scholar 

  10. Gebelein, H.: Das statistische Problem der Korrelation als Variations - und Eigenwertproblem und sein Zusammenhang mit der Ausgleichsrechnung. Z. Angew. Math. Mech. 21, 364–379 (1941)

    Article  MathSciNet  Google Scholar 

  11. Hytönen, T., Veraar, M.C.: On Besov regularity of Brownian motions in infinite dimensions. Probab. Math. Statist. 28, 143–162 (2008)

    MathSciNet  Google Scholar 

  12. Janson, S.: Gaussian Hilbert Spaces, vol. 129 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  13. Kerchev, G., Nourdin, I., Saksman, E., Viitasaari, L.: Local times and sample path properties of the Rosenblatt process. Stoch. Proc. Appl. 131, 498–522 (2021)

    Article  MathSciNet  Google Scholar 

  14. König, H.: Eigenvalue Distribution of Compact Operators, vol. 16 of Operator Theory: Advances and Applications. Basel, Birkhäuser Verlag (1986)

    Book  Google Scholar 

  15. Lévy, P.: Théorie de l’addition des variables aléatoires, vol. XVII of Monographies des Probabilités; calcul des probabilités et ses applications, publiées sous la direction de E. Borel. Gauthier-Villars, Paris (1937)

    Google Scholar 

  16. Maejima, M., Tudor, C.A.: Wiener integrals with respect to the Hermite process and non central limit theorem. Stoch. Anal. Appl. 25, 1043–1056 (2007)

    Article  MathSciNet  Google Scholar 

  17. Nourdin, I., Nualart, D., Peccati, G.: The Breuer–Major theorem in total variation: Improved rates under minimal regularity. Stoch. Proc. Appl. 131, 1–20 (2021)

    Article  MathSciNet  Google Scholar 

  18. Nourdin, I., Peccati, G.: Normal approximations with Malliavin calculus: From Stein’s Method to Universality, vol. 129 of Cambridge Tracts in Mathematics. Cambridge University Press (2012)

  19. Nourdin, I., Peccati, G., Yang, X.: Berry-Esseen bounds in the Breuer-Major CLT and Gebelein’s inequality. Electron. Commun. Probab. 24, 1–12 (2019)

    Article  MathSciNet  Google Scholar 

  20. Nualart, D.: The Malliavin calculus and related topics. Springer - Verlag Berlin Heidelberg (2006)

  21. Ondreját, M., Veraar, M.C.: On temporal regularity of stochastic convolutions in 2-smooth Banach spaces. Ann. Inst. H. Poincaré, Probab. Statist. 56, 1792–1808 (2020)

    Article  MathSciNet  Google Scholar 

  22. Ondreját, M., Šimon, P., Kupsa, M.: Support of solutions of stochastic differential equations in exponential Besov-Orlicz spaces. Stoch. Anal. Appl. 36, 1037–1052 (2018)

    Article  MathSciNet  Google Scholar 

  23. Pick, L., Sickel, W.: Several types of intermediate Besov-Orlicz spaces. Math. Nachr. 164, 141–165 (1993)

    Article  MathSciNet  Google Scholar 

  24. Rao, M.M., Ren, Z.D.: Theory of Orlicz Spaces, vol. 146 of Monographs and Textbooks in Pure and Applied Mathematics, Marcel Dekker, Inc., New York (1991)

  25. Simon, J.: Sobolev, Besov and Nikol’skiĭ fractional spaces: Imbeddings and comparisons for vector valued spaces on an interval. Ann. Mat. Pura Appl. 157, 117–148 (1990)

    Article  MathSciNet  Google Scholar 

  26. Triebel, H.: Theory of Function Spaces. Birkhäuser Basel (1983)

  27. Veraar, M. C.: Correlation inequalities and applications to vector-valued Gaussian random variables and fractional Brownian motion. Potential Anal. 30, 341–370 (2009)

    Article  MathSciNet  Google Scholar 

  28. Viens, F., Vizcarra, A.: Supremum concentration inequality and modulus of continuity for sub n-th chaos process. J. Funct. Anal. 248, 1–26 (2007)

    Article  MathSciNet  Google Scholar 

  29. Weidmann, J.: Linear operators in Hilbert spaces, vol. 68 of Graduate Texts in Mathematics, Springer-Verlag New York 1st ed. (1980)

  30. Wichmann, J.: On temporal regularity for strong solutions to stochastic p-Laplace systems. Preprint, arXiv:2111.09601 (2021)

  31. Zaanen, A.C.: Riesz spaces, II., vol. 30 of North-Holland Mathematical Library, North/Holland Publishing Co., Amsterdam (1983)

Download references

Acknowledgements

The authors are grateful to the anonymous reviewers for their careful reading of the article and for their helpful remarks and suggestions.

Funding

This research was supported by the Czech Science Foundation project No. 19-07140S.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Ondreját.

Ethics declarations

Conflict of Interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Data sharing

Data sharing is not applicable to this article as no datasets were generated or analysed during the current work.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Čoupek, P., Ondreját, M. Besov-Orlicz Path Regularity of Non-Gaussian Processes. Potential Anal 60, 307–339 (2024). https://doi.org/10.1007/s11118-022-10051-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10051-8

Keywords

Mathematics Subject Classification (2010)

Navigation