Skip to main content
Log in

Khavinson Problem for Hyperbolic Harmonic Mappings in Hardy Space

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

In this paper, we partly solve the generalized Khavinson conjecture in the setting of hyperbolic harmonic mappings in Hardy space. Assume that \(u=\mathcal {P}_{\Omega }[\phi ]\) and \(\phi \in L^{p}(\partial {\Omega }, \mathbb {R})\), where \(p\in [1,\infty ]\), \(\mathcal {P}_{\Omega }[\phi ]\) denotes the Poisson integral of ϕ with respect to the hyperbolic Laplacian operator Δh in Ω, and Ω denotes the unit ball \(\mathbb {B}^{n}\) or the half-space \(\mathbb {H}^{n}\). For any x ∈Ω and \(l\in \mathbb {S}^{n-1}\), let CΩ,q(x) and CΩ,q(x;l) denote the optimal numbers for the gradient estimate

$ \left |\nabla u(x)\right |\leq \mathbf {C}_{\Omega ,q}(x)\left \|\phi \right \|{\!}_{L^{p}(\partial {\Omega }, \mathbb {R})} $

and the gradient estimate in the direction l

$ \left |\langle \nabla u(x),l\rangle \right |\leq \mathbf {C}_{\Omega ,q}(x;l)\left \|\phi \right \|{\!}_{L^{p}(\partial {\Omega }, \mathbb {R})}, $

respectively. Here q is the conjugate of p. If \(q\in [1,\infty ]\), then \(\mathbf {C}_{\mathbb {B}^{n},q}(0)\equiv \mathbf {C}_{\mathbb {B}^{n},q}(0;l)\) for any \(l\in \mathbb {S}^{n-1}\). If \(q=\infty \), q = 1 or \(q\in [\frac {2K_{0}-1}{n-1}+1,\frac {2K_{0}}{n-1}+1]\) with \(K_{0}\in \mathbb {N} \), then \(\mathbf {C}_{\mathbb {B}^{n},q}(x)=\mathbf {C}_{\mathbb {B}^{n},q}(x;\pm \frac {x}{|x|})\) for any \(x\in \mathbb {B}^{n}\backslash \{0\}\), and \(\mathbf {C}_{\mathbb {H}^{n},q}(x)=\mathbf {C}_{\mathbb {H}^{n},q}(x;\pm e_{n})\) for any \(x\in \mathbb {H}^{n}\). However, if \(q\in (1,\frac {n}{n-1})\), then \(\mathbf {C}_{\mathbb {B}^{n},q}(x)=\mathbf {C}_{\mathbb {B}^{n},q}(x;t_{x})\) for any \(x\in \mathbb {B}^{n}\backslash \{0\}\), and \(\mathbf {C}_{\mathbb {H}^{n},q}(x)=\mathbf {C}_{\mathbb {H}^{n},q}(x;t_{e_{n}})\) for any \(x\in \mathbb {H}^{n}\). Here tw denotes any unit vector in \(\mathbb {R}^{n}\) such that 〈tw,w〉 = 0 for \(w\in \mathbb {R}^{n}\setminus \{0\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Burgeth, B.: A Schwarz lemma for harmonic and hyperbolic-harmonic functions in higher dimensions. Manuscr. Math. 77, 283–291 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, J., Kalaj, D.: A Schwarz lemma for hyperbolic harmonic mappings in the unit ball. Math. Scand. 127, 617–642 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, J., Huang, M., Rasila, A., Wang, X.: On Lipschitz continuity of solutions of hyperbolic Poisson’s equation. Calc. Var. Partial Differ. Equ. 57, 32 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  4. Colonna, F.: The Bloch constant of bounded harmonic mappings. Indiana Univ. Math. J. 38, 829–840 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  5. Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.: Higher Transcendental Functions, vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  6. Kalaj, D.: A proof of Khavinson conjecture in \(\mathbb {R}^{4}\). Bull. Lond. Math. Soc. 49, 561–570 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  7. Kalaj, D., Marković, M.: Optimal estimates for the gradient of harmonic functions in the unit disk. Complex Anal. Oper. Theory 7, 1167–1183 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Kalaj, D., Vuorinen, M.: On harmonic functions and the Schwarz lemma. Proc. Am. Math. Soc. 140, 161–165 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Khavinson, D.: An extremal problem for harmonic functions in the ball. Canad. Math. Bull. 35, 218–220 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Kresin, G.: Some sharp estimates for the gradient of bounded or semibounded harmonic functions. Funct. Diff. Eq. 16, 315–336 (2009)

    MathSciNet  MATH  Google Scholar 

  11. Kresin, G., Maz’ya, V.: Sharp Real-Part Theorems. A Unified Approach. Springer, Berlin (2007)

    MATH  Google Scholar 

  12. Kresin, G., Maz’ya, V.: Optimal estimates for the gradient of harmonic functions in the multidimensional half-space. Discrete Contin. Dyn. Syst. 28, 425–440 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kresin, G., Maz’ya, V.: Sharp pointwise estimates for directional derivatives of harmonic functions in a multidimensional ball. J. Math. Sci. (N.Y.) 169, 167–187 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. Liu, C.: A proof of the Khavinson conjecture. Math. Ann. 380, 719–732 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  15. Macintyre, A., Rogosinski, W.: Extremum problems in the theory of analytic functions. Acta Math. 82, 275–325 (1950)

    Article  MathSciNet  MATH  Google Scholar 

  16. Marković, M.: Solution to the Khavinson problem near the boundary of the unit ball. Constr. Approx. 45, 243–271 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  17. Melentijević, P.: A proof of the Khavinson conjecture in \(\mathbb {R}^{3}\). Adv. Math. 352, 1044–1065 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  18. Melentijević, P.: On the Bloch-type seminorms of the weighted Berezin transform. Manuscript, arXiv:1711.04751v2

  19. Protter, M., Weinberger, H.: Maximum Principles in Differential Equations, p 1984. Prentice Hall, Inc., Englewood Cliffs (1967)

    MATH  Google Scholar 

  20. Rainville, E.: Special Functions. The Macmillan Co., New York (1960)

    MATH  Google Scholar 

  21. Stoll, M.: Harmonic and Subharmonic Function Theory on the Hyperbolic Ball. Cambridge University Press, Cambridge (2016)

    Book  MATH  Google Scholar 

Download references

Acknowledgements

Authors wish to thank the anonymous referee for valuable suggestions concerning the presentation of this paper.

Funding

The first author is partially supported by NNSF of China (No. 11801166, 12071121), NSF of Hunan Province (No. 2018JJ3327), China Scholarship Council and the construct program of the key discipline in Hunan Province. The third author is partially supported by MPNTR grant 174017, Serbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaolong Chen.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, J., Kalaj, D. & Melentijević, P. Khavinson Problem for Hyperbolic Harmonic Mappings in Hardy Space. Potential Anal 59, 1205–1234 (2023). https://doi.org/10.1007/s11118-022-10004-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-022-10004-1

Keywords

Mathematics Subject Classification (2010)

Navigation