Skip to main content
Log in

Boundary Doubling Inequality and Nodal sets of Robin and Neumann eigenfunctions

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We investigate the doubling inequality and upper bounds of nodal sets for Robin and Neumann eigenfunctions on the boundary and in the interior of the domain. Most efforts are devoted to the sharp boundary doubling inequality with new and novel quantitative global Carleman estimates. We are able to obtain the sharp upper bounds for boundary nodal sets of Neumann eigenfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability Statements

All data generated or analysed during this study are included in this published article.

References

  1. Adolfsson, V., Escauriaza, L., Kenig, C.: Convex domains and unique continuation at the boundary. Rev. Mat. Iberoamer. 11(3), 513–526 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alessandrini, G., Rondi, L., Rosset, E., Vessella, S.: The stability for the Cauchy problem for elliptic equations. Inverse Probl. 25(12), 123004, 47 (2009)

  3. Aronszajn, N., Krzywicki, A., Szarski, J.: A unique continuation theorem for exterior differential forms on Riemannian manifolds. Ark Mat. 4, 417–453 (1962)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bakri, L., Casteras, J. B.: Quantitative uniqueness for schrödinger operator with regular potentials. Math. Methods Appl. Sci. 37, 1992–2008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bellova, K., Lin, F. -H.: Nodal sets of Steklov eigenfunctions, Calc. Var. PDE 54, 2239–2268 (2015)

    Article  MATH  Google Scholar 

  6. Brüning, J.: ÜBer Knoten won Eigenfunktionen des Laplace-Beltrami-Operators. Math. Z. 158, 15–21 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  7. Colding, T. H., Minicozzi II, W. P.: Lower bounds for nodal sets of eigenfunctions. Comm. Math. Phys. 306, 777–784 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Daners, D., Kennedy, J.: On the asymptotic behaviour of the eigenvalues of a Robin problem. Differ. Integral Equ. 23(7-8), 659–669 (2010)

    MathSciNet  MATH  Google Scholar 

  9. Dong, R. -T.: Nodal sets of eigenfunctions on Riemann surfaces. J. Differ. Geom. 36, 493–506 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  11. Donnelly, H., Fefferman, C.: Nodal sets for eigenfunctions of the Laplacian on surfaces. J. Amer. Math. Soc. 3(2), 333–353 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  12. Donnelly, H., Fefferman, C.: Nodal Sets of Eigenfunctions: Riemannian Manifolds with Boundary. In: Analysis, Et Cetera, Academic Press, pp. 251–262, Boston (1990)

  13. Elbert, A., Siafarikas, P.: On the zeros of acν(x) + xcν(x), where cν(x) is a cylinder function. J. Math. Anal. Appl. 164(1), 21–33 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Escauriaza, L., Adolfsson, V.: C1,α domains and unique continuation at the boundary. Comm. Pure Appl. Math. L, 935–969 (1997)

  15. Garofalo, N., Lin, F. -H.: Monotonicity properties of variational integrals, ap weights and unique continuation. Indiana Univ. Math. 35, 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  16. Georgiev, B., Roy-Fortin, G.: Polynomial upper bound on interior Steklov nodal sets. J. Spectr. Theory 9(3), 897–919 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  17. Han, Q., Lin, F.-H.: Nodal sets of solutions of Elliptic Differential Equations, book in preparation (online at http://www.nd.edu/qhan/nodal.pdf

  18. Han, X., Lu, G.: A geometric covering lemma and nodal sets of eigenfunctions. Math. Res. Lett. 18(2), 337–352 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hardt, R., Simon, L.: Nodal sets for solutions of ellipitc equations. J. Differ. Geom. 30, 505–522 (1989)

    Article  MATH  Google Scholar 

  20. Hezari, H., Sogge, C. D.: A natural lower bound for the size of nodal sets. Anal. PDE. 5(5), 1133–1137 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  21. Jerison, D., Lebeau, G.: Nodal sets of sums of eigenfunctins. Harmonic analysis and partial differential equations Chicago, pp. 223–239. Chicago Lectures in Math., Uniw. Chicago Press, Chicago IL (1999)

  22. Kenig, C.: Some recent applications of unique continuation, In Recent developments in nonlinear partial differential equations, vol. 439, pp. 25–56, Contemp. Math, Amer. Math. Soc., Providence (2007)

  23. Kenig, C., Silvestre, L., Wang, J. -N.: On Landis’ conjecture in the plane. Comm. Partial Differ. Equ. 40, 766–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lebeau, G., Robbiano, L.: Contrôle exacte de l’équation de la chaleur. Comm. Partial Differ. Equ. 20, 335–356 (1995)

    Article  MATH  Google Scholar 

  25. Le Rousseau, J., Lebeau, G.: On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations. ESAIM Control Optim. Calc. Var. 18(3), 712–747 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Li, M., Zhou, X.: Min-max theory for free boundary minimal hypersurfaces I: regularity theory, arXiv:1611.02612

  27. Lin, F. -H.: Nodal sets of solutions of elliptic equations of elliptic and parabolic equations. Comm. Pure Appl. Math. 44, 287–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  28. Lin, F.-H., Zhu, J.: Upper bounds of nodal sets for eigenfunctions of eigenvalue problems. Mathematische Annalen, In press. https://doi.org/10.1007/s00208-020-02098-y

  29. Logunov, A.: Nodal sets of Laplace eigenfunctions: polynomial upper estimates of the Hausdorff measure. Ann. Math. 187, 221–239 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  30. Logunov, A.: Nodal sets of Laplace eigenfunctions: proof of Nadirashvili’s conjecture and of the lower bound in Yau’s conjecture. Ann. Math. 187, 241–262 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  31. Logunov, A., Malinnikova, E.: Nodal sets of Laplace eigenfunctions: estimates of the Hausdorff measure in dimension two and three, 50 years with Hardy spaces, vol. 261, pp. 333–344. Oper. Theory Adv. Appl, Birkhäuser/Springer, Cham (2018)

  32. Logunov, A., Malinnikova, E., Nadirashvili, N., Nazarov, F.: The Landis conjecture on exponential decay, arXiv:2007.07034

  33. Logunov, A., Malinnikova, E., Nadirashvili, N., Nazarov, F.: The sharp upper bound for the area of the nodal sets of Dirichlet Laplace eigenfunctions, arXiv:2104.09012

  34. Lu, G.: Covering lemmas and an application to nodal geometry on Riemannian manifolds. Proc. Amer. Math. Soc, 117(4), 971–978 (1993)

  35. Mangoubi, D.: A remark on recent lower bounds for nodal sets. Comm. Partial Differ. Equ. 36(12), 2208–2212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. Morrey, C. B., Nirenberg, L.: On the analyticity of the solutions of linear elliptic systems of partial differential equations 10, 271–290 (1957)

  37. Polterovich, I., Sher, D., Toth, J.: Nodal length of Steklov eigenfunctions on real-analytic Riemannian surfaces. J. Reine Angew. Math. 754, 17–47 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  38. Rüland, A.: Quantitative unique continuation properties of fractional schrödinger equations: doubling, vanishing order and nodal domain estimates. Trans. Amer. Math. Soc. 369(4), 2311–2362 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  39. Sogge, C. D., Wang, X., Zhu, J.: Lower bounds for interior nodal sets of Steklov eigenfunctions. Proc. Amer. Math. Soc. 144(11), 4715–4722 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  40. Sogge, C. D., Zelditch, S.: Lower bounds on the Hausdorff measure of nodal sets. Math. Res. Lett. 18, 25–37 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  41. Steinerberger, S.: Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Differ. Equ. 39(12), 2240–2261 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  42. Toth, J., Zelditch, S.: Counting nodal lines which touch the boundary of an analytic domain. J. Differ. Geom. 81(3), 649–686 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yau, S. T.: Problem section, seminar on differential geometry, Annals of Mathematical Studies, vol. 102, pp. 669–706, Princeton (1982)

  44. Wang, X., Zhu, J.: A lower bound for the nodal sets of Steklov eigenfunctions. Math. Res. Lett. 22(4), 1243–1253 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Zelditch, S.: Measure of nodal sets of analytic steklov eigenfunctions. Math. Res. Lett. 22(6), 1821–1842 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  46. Zhu, J.: Doubling property and vanishing order of Steklov eigenfunctions. Comm. Partial Differ. Equ. 40(8), 1498–1520 (2015)

  47. Zhu, J.: Interior nodal sets of Steklov eigenfunctions on surfaces. Anal. PDE 9(4), 859–880 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  48. Zhu, J.: Geometry and interior nodal sets of Steklov eigenfunctions. Calc. Var. Partial Differ. Equ. 59(5), 150 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author thanks Professor Steve Zelditch for bringing the reference [42] to our attentions and helpful discussions. The author is also indebted to anonymous referees for useful comments which help improve the presentation of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiuyi Zhu.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Zhu is supported in part by NSF grant DMS-1656845 and OIA-1832961. The first version of the paper was posted in arXiv as arXiv:1810.12974.

Appendix

Appendix

In the Appendix, we first construct polar coordinates for equations with Lipschitz metrics in Eq. 2.9, then we obtain the doubling inequalities on the double manifold. Most of the arguments in the Appendix are kind of known and scattered in the literature. We present the details for the conveniences of the readers. Without loss of generality, we consider the construction of normal coordinates at origin. Starting from a ball \(\mathbb B_{\delta }\) in local coordinates, for the metric \(\tilde {g}_{ij}\) in Eq. 2.9, we introduce a “radial” coordinate and a conformal change metric \(\hat {g}_{ij}\). Let

$$ r=r(x)=(\tilde{g}_{ij}(0)x_{i} x_{j})^{\frac{1}{2}} $$
(5.41)

and

$$ \hat{g}_{ij}(x)= \tilde{g}_{ij}(x){\hat{\psi}}(x), $$
(5.42)

where

$$ {\hat{\psi}}(x)= \tilde{g}^{kl}(x)\frac{\partial r}{\partial x^{k}}\frac{\partial r}{\partial x^{l}} $$
(5.43)

for x≠ 0 and \((\tilde {g}^{ij})=(\tilde {g}_{ij})^{-1}\) is the inverse matrix. In the whole paper, we adopt the Einstein notation. The summation over index is understood. We assume the uniform ellipticity condition holds in \(\mathbb B_{\delta }\) for

$$ {\Lambda}_{1}\|\xi\|^{2} \leq \sum\limits^{n}_{i,j=1} \tilde{g}_{ij}(x)\xi_{i}\xi_{j}\leq {\Lambda}_{2}\|\xi\|^{2} $$

for some positive constant Λ1 and Λ2 depending only on Ω. Then \(\hat {\psi }\) is bounded above and below satisfying

$$ \frac{{\Lambda}_{1}}{{\Lambda}_{2}}\leq \hat{\psi}\leq \frac{{\Lambda}_{2}}{{\Lambda}_{1}}. $$
(5.44)

We can also see that \(\hat {\psi }\) is Lipschitz continuous. With these auxiliary quantities, the following replacement of geodesic polar coordinates are constructed in [3]. In the geodesic ball \(\hat { \mathbb B}_{\hat {r}_{0}}=\{ x\in \tilde {\Omega }| r(x)\leq \hat {r}_{0}\},\) the following properties hold:

  1. (i)

    \(\hat {g}_{ij}(x) \) is Lipschitz continuous;

  2. (ii)

    \(\hat {g}_{ij}(x) \) is uniformly elliptic with \( \frac {{{\Lambda }_{1}^{2}}}{ {\Lambda }_{2} }\|\xi \|^{2}\leq \hat {g}_{ij}(x)\xi _{i}\xi _{j}\leq \frac {{{\Lambda }_{2}^{2}}}{ {\Lambda }_{1}}\|\xi \|^{2}. \)

  3. (iii)

    Let \({\Sigma } =\partial \hat { \mathbb B}_{\hat {r}_{0}}\). We can parametrize \(\hat { \mathbb B}_{\hat {r}_{0}} \backslash \{0\}\) by the polar coordinate r and θ, with r defined by Eq. 5.41 and θ = (θ1,⋯θn− 1) be the local coordinates on Σ. In these polar coordinates, the metric can be written as

    $$ \hat{g}_{ij}(x) dx^{i} dx^{j}= dr^{2}+ r^{2} \hat{\gamma}_{ij} d\theta^{i} d\theta^{j} $$
    (5.45)

    with \(\hat {\gamma }_{ij}=\frac {1}{r^{2}} \hat {g}_{kl}(x) \frac {\partial x^{k}}{\partial \theta ^{i}}\frac {\partial x^{l}}{\partial \theta ^{j}}\).

  4. (iv)

    There exists a positive constant M depending on \(\tilde {g}_{ij}\) such that for any tangent vector ξjTθ(Σ),

    $$ \begin{array}{@{}rcl@{}} |\frac{\partial \hat{\gamma}_{ij}(r, \theta)}{\partial r} \xi^{i} \xi^{j}|\leq M| \hat{\gamma}_{ij}(r, \theta)\xi^{i} \xi^{j}|. \end{array} $$
    (5.46)

Let \(\hat {\gamma }=\det { (\hat {\gamma }_{ij})}\). Then Eq. 5.46 implies that

$$ |\frac{\partial \ln \sqrt{\hat{\gamma}}}{\partial r}| \leq CM. $$
(5.47)

The existence of the coordinates (r, θ) allows us to pass to “geodesic polar coordinates”. In particular, \(r(x)=(\tilde {g}_{ij}(0)x_{i} x_{j})^{\frac {1}{2}}\) is the geodesic distance to the origin in the metric \(\hat {g}_{ij}\). In the new metric \(\hat {g}_{ij}\), the Laplace-Beltrami operator is

$$\triangle_{\hat{g}}=\frac{1}{\sqrt{\hat{g} }} \frac{\partial}{\partial x_{i}}(\hat{g}^{ij}\sqrt{ \hat{g}} \frac{\partial}{\partial x_{j}} ),$$

where \(\hat {g}= \det (\hat {g}_{ij})\). If \(\bar u\) is a solution of Eq. 2.9, then \(\bar u\) is locally the solution of the equation

$$ \triangle_{\hat{g}} \bar u +\hat{b}(x)\cdot\nabla \bar u+ \hat{c}(x) \bar u=0 \quad \text{in} \ \hat{\mathbb B}_{\hat{r}_{0}}, $$
(5.48)

where

$$ \left\{ \begin{array}{lll} &\hat{b}_{i}=\frac{2-n}{2\hat{\psi}^{2}} \tilde{g}^{ij} \frac{\partial \hat{\psi} }{\partial x_{j}}+\frac{1}{\hat{\psi}}\tilde{b}_{i}, \\ &\hat{c}(x)=\frac{\tilde{c}(x)}{\hat{\psi}}. \end{array} \right. $$
(5.49)

By the properties of \(\hat {\psi }\), we can see \(\hat {c}(x)\) is Lipschitz continuous. Since the term \(\frac {2-n}{2\hat {\psi }^{2}} \tilde {g}^{ij} \frac {\partial \hat {\psi } }{\partial x_{j}}\) in \(\hat {b}_{i}\) is only continuous and does not depend on either α or λ, it can be ignored in the future quantitative estimates for doubling inequality or nodal sets. The major term \(\frac {1}{\hat {\psi }}\tilde {b}_{i}\) is Lipschitz continuous. From the conditions in Eq. 2.10, we still write the conditions for \(\hat {b}\) and \(\hat {c}\) as

$$ \left\{ \begin{array}{lll} \|\hat {b}\|_{W^{1,\infty}(\hat{\mathbb B}_{\hat{r}_{0}})}\leq C (|\alpha|+1), \\ \|\hat { c}\|_{W^{1,\infty}(\hat{\mathbb B}_{\hat{r}_{0}})}\leq C (\alpha^{2}+|\lambda|). \end{array} \right. $$
(5.50)

For simplicity, we may write \(\triangle _{\hat {g}}\) or △g as △ if the metric is understood. Since the geodesic balls or half balls under different metrics are comparable, we write all as \(\mathbb B_{r}(x)\) or \(\mathbb B^{+}_{r}(x)\) centered at x with radius r. The rest of section is to show the doubling inequality on the double manifold. Let r = r(y) be the Riemannian distance from origin to y. Our major tools to get the three-ball theorem and doubling inequality are the quantitative Carleman estimates. Carleman estimates are weighted integral inequalities with a weight function eτψ, where ψ usually satisfies some convex condition. We construct the weight function ψ as follows. Set

$$\psi(y)=-g(\ln r(y)),$$

where \(g(t)=t+\log t^{2}\) for \(-\infty <t <T_{0}\), and T0 is negative with |T0| large enough. One can check that

$$ \lim_{t \to -\infty}-e^{-t} g^{\prime\prime}(t)=\infty \quad \text{and} \quad \lim_{t \to -\infty} g^{\prime}(t)=1. $$
(5.51)

Define

$$ \psi_{\tau}(y)=e^{\tau \psi(y)}. $$
(5.52)

We state the following quantitative Carleman estimates. The similar Carleman estimates with lower bound of the parameter τ have been obtained in e.g. [4, 10, 48]. Interested readers may refer to them for the proof of the following proposition.

Proposition 1

There exist positive constants C1, C0 and small r0, such that for \(v\in C^{\infty }_{0}(\mathbb B_{r_{0}} \backslash \mathbb B_{\rho }),\) and

$$\tau>C_{1}(1+|\alpha|+\sqrt{|\lambda|}),$$

one has

$$ \begin{array}{@{}rcl@{}} C_{0}\|r^{2} \psi_{\tau}\big(\triangle v +\hat{b}(y)\cdot\nabla v+ \hat{c}(y) v\big)\|^{2}&\geq& \tau^{3}\|\psi_{\tau} {(\log r)}^{-1} v \|^{2} +\tau\|r \psi_{\tau} {(\log r)}^{-1}\nabla v \|^{2} \\ &&+ \tau \rho \|r^{-\frac{1}{2}}\psi_{\tau} v \|^{2}. \end{array} $$
(5.53)

The ∥⋅∥r or ∥⋅∥ norm in the whole paper denotes the L2 norm over \(\mathbb B_{r}(0)\) if not explicitly stated. Specifically, \(\|\cdot \|_{\mathbb B_{r}(y))}\) for short denotes the L2 norm on the ball \(\mathbb B_{r}(y)\). Thanks to the quantitative Carleman estimates, it is a standard way to derive a quantitative three-ball theorem. Let \(\bar u\) be the solutions of the second order elliptic (5.48). We apply such Carleman estimates with \(v=\eta \bar u \), where η is an appropriate smooth cut-off function, and then select an appropriate choice of the parameter τ. The statement of the quantitative three-ball theorem is as follows.

Lemma 1

There exist positive constants \(\bar r_{0}\), C which depend only on Ω and 0 < β < 1 such that, for any \(0<R<\bar r_{0}\), the solutions \(\bar u\) of Eq. 5.48 satisfy

$$ \|\bar u \|_{\mathbb B_{2R}(x_{0})}\leq e^{C(|\alpha|+\sqrt{|\lambda|})} \|\bar u \|^{\beta}_{\mathbb B_{R}(x_{0})} \|\bar u \|^{1-\beta}_{\mathbb B_{3R}(x_{0})} $$
(5.54)

for any \(x_{0}\in \tilde {\Omega }\).

Since the proof of three-ball theorem is kind of standard by the applications of quantitative Carleman estimates (5.53). We skip the details. The readers may also refer to Proposition 1 for similar proofs.

Let \(\|u\|_{L^{2}({\Omega })}=1\). Because of the even extension, we may write

$$\|\bar u\|_{L^{2}(\tilde{\Omega})}=2.$$

Set \(\bar x\) be the point where

$$ \|\bar u\|_{L^{2}(\mathbb B_{\hat{r}_{0}}(\bar x))}=\max_{x\in \tilde{\Omega}} \|\bar u\|_{L^{2}(\mathbb B_{\hat{r}_{0}}(x))} $$

for some \(0<\hat {r}_{0}< \frac {\bar r_{0}}{8}\). The compactness of \(\tilde {\Omega }\) implies that

$$\|\bar u\|_{L^{2}(\mathbb B_{\hat{r}_{0}}(\bar x))}\geq C_{\hat{r}_{0}}$$

for some \(C_{\hat {r}_{0}}\) depending on \(\tilde {\Omega }\) and \(\hat {r}_{0}\). From the quantitative three-ball inequality (5.54), at any point x ∈Ω, one has

$$ \|\bar u\|_{L^{2}(\mathbb B_{{\hat{r}_{0}}/2}(x))}\geq e^{-C(|\alpha|+\sqrt{|\lambda|})} \|\bar u\|^{\frac{1}{\beta}}_{L^{2}(\mathbb B_{{\hat{r}_{0}}}(x))}. $$
(5.55)

Let l be a geodesic curve between \(\hat {x}\) and \(\bar x\), where \(\hat {x}\) is any point in \(\tilde {\Omega }\). Define \(x_{0}=\hat {x}, \cdots , x_{m}=\bar x\) such that xil and \(\mathbb B_{\frac {\hat {r}_{0}}{2}}(x_{i+1})\subset \mathbb B_{{\hat {r}_{0}}}(x_{i})\) for i from 0 to m − 1. The number of m depends only on \( diam (\tilde {\Omega })\) and \(\hat {r}_{0}\). The properties of (xi)1≤im and the inequality (5.55) imply that

$$ \begin{array}{@{}rcl@{}} \|\bar u\|_{L^{2}(\mathbb B_{{\hat{r}_{0}}/2}(x_{i}))}\geq e^{-C(|\alpha|+\sqrt{|\lambda|})} \|\bar u\|^{\frac{1}{\beta}}_{L^{2}(\mathbb B_{{\hat{r}_{0}}/2}(x_{i+1}))}. \end{array} $$
(5.56)

Iterating the argument to get to \(\bar x\), we obtain that

$$ \begin{array}{@{}rcl@{}} \|\bar u\|_{L^{2}(\mathbb B_{{\hat{r}_{0}}/2}(\hat{x}))}&\geq& e^{-C_{\hat{r}_{0}}(|\alpha|+\sqrt{|\lambda|})} C_{\hat{r}_{0}}^{\frac{1}{\beta^{m}}} \\ &\geq& e^{-C_{\hat{r}_{0}}(|\alpha|+\sqrt{|\lambda|})} \|\bar u\|_{L^{2}(\tilde{\Omega})}. \end{array} $$
(5.57)

Let \(A_{R, \ 2R}=(\mathbb B_{2R}(x_{0})\backslash \mathbb B_{R}(x_{0}))\) for any \(x_{0}\in \tilde {\Omega }\). Then there exists \(\mathbb B_{{\hat {r}_{0}}/2}(\hat {x})\subset A_{ \hat {r}_{0}, \ 2\hat {r}_{0}}\) for some \(\hat {x}\in A_{2\hat {r}_{0}, \ \hat {r}_{0}}\). Thus, by Eq. 5.57,

$$ \| \bar u\|_{L^{2}(A_{\hat{r}_{0}, \ 2\hat{r}_{0}} )}\geq e^{-C_{\hat{r}_{0}}(|\alpha|+\sqrt{|\lambda|})} \| \bar u\|_{L^{2}(\tilde{{\Omega}})}. $$
(5.58)

With aid of the quantitative Carleman estimates (5.53) and the inequality (5.58), using the argument as the proof of Lemma 3, we are ready to derive the doubling inequality as follows.

Proof of Proposition 1

Let \(R=\frac {\bar r_{0}}{8}\), where \(\bar r_{0}\) is the fixed constant in the three-ball inequality in Eq. 5.54. Choose \(0<\rho <\frac {R}{24}\), which can be chosen to be arbitrarily small. Define a smooth cut-off function 0 < η < 1 as follows,

  • η(r) = 0 if r(x) < ρ or r(x) > 2R,

  • η(r) = 1 if HCode \(\frac {3\rho }{2}<r(x)<R\),

  • \(|\nabla \eta |\leq \frac {C}{\rho }\) if \(\rho <r(x)<\frac {3\rho }{2}\),

  • |∇2η|≤ C if R < r(x) < 2R.

We substitute \(v=\eta \bar u \) into the Carleman estimates (5.53) and consider the elliptic (5.48). It follows that

$$ \begin{array}{@{}rcl@{}} \tau^{\frac{3}{2}}\| (\log r)^{-1} e^{\tau \psi}\eta \bar u \|+ \tau^{\frac{1}{2}} \rho^{\frac{1}{2}} \| r^{-\frac{1}{2}} e^{\tau \psi}\eta \bar u \| & \leq& C\| r^{2} e^{\tau \psi}(\triangle_{\hat{g}} (\eta\bar u)+ \hat{b}(x) \cdot \nabla (\eta\bar u)+ \hat{c}(x) \eta \bar u )\| \\ & \leq& C\| r^{2} e^{\tau \psi}(\triangle \eta \bar u +2\nabla\eta\cdot \nabla v+\hat{b}\cdot \nabla \eta \bar u )\|. \end{array} $$

Thanks to the properties of η and the fact that τ > 1, we get that

$$ \begin{array}{@{}rcl@{}} \| (\log r)^{-1} e^{\tau \psi} \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ \| e^{\tau \psi} \bar u \|_{\frac{3\rho}{2}, 4\rho} &\leq& C (\| e^{\tau \psi} \bar u \|_{\rho, \frac{3\rho}{2}}+\| e^{\tau \psi} \bar u\|_{R, 2R} ) \\ &&+ C(\rho \| e^{\tau \psi} \nabla \bar u \|_{\rho, \frac{3\rho}{2}}+ R\| e^{\tau \psi} \nabla \bar u \|_{R, 2R}) \\ &&+ C(|\alpha|+1) (\rho \| e^{\tau \psi} \bar u \|_{\rho, \frac{3\rho}{2}}+ R\| e^{\tau \psi} \bar u \|_{R, 2R} ). \end{array} $$

Since R < 1 is a fixed constant and ρ < 1, we get that

$$ \begin{array}{@{}rcl@{}} \| e^{\tau \psi} \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ \| e^{\tau \psi} \bar u \|_{\frac{3\rho}{2}, 4\rho} &\leq& C(|\alpha|+1) (\| e^{\tau \psi} \bar u \|_{\rho, \frac{3\rho}{2}}+\| e^{\tau \psi} \bar u \|_{R, 2R} ) \\ &&+ C(\delta \| e^{\tau \psi} \nabla \bar u \|_{\rho, \frac{3\rho}{2}}+ R\| e^{\tau \psi} \nabla \bar u \|_{R, 2R}). \end{array} $$

Using the radial and decreasing property of ψ yields that

$$ \begin{array}{@{}rcl@{}} e^{\tau \psi(\frac{2R}{3})}\| \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ e^{\tau \psi({4\rho})} \| \bar u \|_{\frac{3\rho}{2}, 4\rho} &\leq &C (|\alpha|+1) (e^{\tau \psi(\rho) }\| \bar u \|_{\rho, \frac{3\rho}{2}}+e^{\tau \psi(R) }\| \bar u \|_{R, 2R} ) \\ &&+ C(\rho e^{\tau \psi(\rho)} \| \nabla \bar u \|_{\rho, \frac{3\rho}{2}}+ Re^{\tau\psi(R)}\| \nabla \bar u \|_{R, 2R}). \end{array} $$

For the Eq. 5.48, it is known that the Caccioppoli type inequality

$$ \|\nabla \bar u \|_{(1-a)r}\leq \frac{C(|\alpha|+\sqrt{|\lambda|})}{r}\| \bar u \|_{r} $$
(5.59)

holds with any 0 < a < 1. With the help of the Caccioppoli type inequality (5.59), we have

$$ \begin{array}{@{}rcl@{}} e^{\tau \psi(\frac{2R}{3})}\| \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ e^{\tau \psi({4\rho})} \| \bar u \|_{\frac{3\rho}{2}, 4\rho} &\leq C (|\alpha|+\sqrt{|\lambda|}) (e^{\tau \psi(\rho) }\| \bar u \|_{2\rho}+e^{\tau \psi(R)}\| \bar u \|_{3R}). \end{array} $$
(5.60)

Adding the term \( e^{\tau \psi ({4\rho })} \|\bar u \|_{\frac {3\rho }{2}}\) to both sides of last inequality and taking ψ(ρ) > ψ(4ρ) into account yields that

$$ \begin{array}{@{}rcl@{}} e^{\tau \psi(\frac{2R}{3})}\| \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ e^{\tau \psi({4\rho})} \| \bar u \|_{4\rho} &\leq C (|\alpha|+\sqrt{|\lambda|}) (e^{\tau \psi(\rho) }\| \bar u \|_{2\rho}+e^{\tau\psi(R)}\| \bar u \|_{3R}). \end{array} $$
(5.61)

We choose τ such that

$$C(|\alpha|+\sqrt{|\lambda|})e^{\tau\psi(R)}\|\bar u \|_{3R}\leq \frac{1}{2}e^{\tau\psi(\frac{2R}{3})} \|\bar u \|_{\frac{R}{2}, \frac{2R}{3}}. $$

To achieve it, we need to have

$$ \tau\geq \frac{1}{\psi(\frac{2R}{3})-\psi(R)}\ln \frac{ 2C(|\alpha|+\sqrt{|\lambda|}) \|\bar u \|_{3R}}{ \|\bar u \|_{\frac{R}{2}, \frac{3R}{2}}}. $$

Then, we can absorb the second term on the right hand side of Eq. 5.60 into the left hand side,

$$ \begin{array}{@{}rcl@{}} e^{\tau \psi(\frac{2R}{3})}\| \bar u \|_{\frac{R}{2}, \frac{2R}{3}}+ e^{\tau \psi({4\rho})} \| \bar u \|_{4\rho} \leq C (|\alpha|+\sqrt{|\lambda|}) e^{\tau \psi(\rho) }\| \bar u \|_{2\rho}. \end{array} $$
(5.62)

To apply the Carleman estimates (5.53), we have assumed that \(\tau \geq C(|\alpha |+\sqrt {|\lambda |})\). Therefore, to have such τ, we select

$$\tau=C(|\alpha|+\sqrt{|\lambda|})+ \frac{1}{\psi(\frac{2R}{3})-\psi(R)}\ln \frac{ 2C(|\alpha|+\sqrt{|\lambda|}) \|\bar u \|_{3R}}{ \|\bar u \|_{\frac{R}{2}, \frac{3R}{2}}}. $$

Dropping the first term in (5.62), we get that

$$ \begin{array}{@{}rcl@{}} \|\bar u\|_{4\rho}&\leq& C(|\alpha|+\sqrt{|\lambda|})\exp\{ \big(\frac{1}{\psi(\frac{2R}{3})-\psi(R)}\ln \frac{ 2C(|\alpha|+\sqrt{|\lambda|}) \|\bar u \|_{3R}}{ \|\bar u \|_{\frac{R}{2}, \frac{3R}{2}}} \big) \big(\psi(\rho)-\psi(4\rho)\big) \\ & +&C(|\alpha|+\sqrt{|\lambda|}) \}\|\bar u \|_{2\rho} \\ &\leq& e^{C (|\alpha|+\sqrt{|\lambda|})} (\frac{\|\bar u \|_{3R}}{ \|\bar u \|_{\frac{R}{2}, \frac{3R}{2}}})^{C} \|\bar u \|_{2\rho}, \end{array} $$
(5.63)

where we have used the condition that

$$ \beta_{1}^{-1}<\psi(\frac{2R}{3})-\psi(R)<\beta_{1}, $$
$$ \beta_{2}^{-1}< \psi(\rho)-\psi(4\rho)<\beta_{2} $$

for some positive constants β1 and β2 independent on R or ρ.

Let \(\hat {r}_{0}=\frac {R}{2}\) be fixed in Eq. 5.58. With aid of Eq. 5.58, we derive that

$$ \frac{\|\bar u \|_{{L^{2}(\mathbb B_{3 R}})}}{ \|\bar u\|_{{{L^{2}(A_{\frac{R}{2}, \ \frac{3R}{2}})}}}}\leq e^{C(|\alpha|+\sqrt{|\lambda|})}. $$

Therefore, it follows from Eq. 5.63 that

$$ \|\bar u \|_{L^{2}(\mathbb B_{4\rho})}\leq e^{C(|\alpha|+\sqrt{|\lambda|})} \|\bar u \|_{L^{2}(\mathbb B_{2\rho})}. $$

Choosing \(\rho =\frac {r}{2}\), we get the doubling inequality

$$ \|\bar u \|_{L^{2}(\mathbb B_{2r})}\leq e^{C(|\alpha|+\sqrt{|\lambda|})} \|\bar u \|_{L^{2}(\mathbb B_{r})} $$
(5.64)

for \(r\leq \frac {R}{12}\). If \(r\geq \frac { R}{12}\), from Eq. 5.57,

$$ \begin{array}{@{}rcl@{}} \|\bar u \|_{L^{2} (\mathbb B_{r})}&\geq& \|\bar u \|_{L^{2}(\mathbb B_{\frac{ R}{12}})} \\ &\geq& e^{-C_{R}(|\alpha|+\sqrt{|\lambda|})}\|\bar u \|_{L^{2}({\Omega})} \\ &\geq& e^{-C_{R}(|\alpha|+\sqrt{|\lambda|})}\|\bar u \|_{L^{2}(\mathbb B_{2r})}. \end{array} $$
(5.65)

Together with Eqs. 5.64 and 5.65, we obtain the doubling estimates

$$ \|\bar u \|_{L^{2}(\mathbb B_{2r})}\leq e^{C(|\alpha|+\sqrt{|\lambda|})} \|\bar u \|_{L^{2}(\mathbb B_{r})} $$
(5.66)

for any r > 0, where C only depends on the double manifold \(\tilde {\Omega }\). By the translation invariant of the arguments, the proof of Eq. 2.11 is derived. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J. Boundary Doubling Inequality and Nodal sets of Robin and Neumann eigenfunctions. Potential Anal 59, 375–407 (2023). https://doi.org/10.1007/s11118-021-09972-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-021-09972-7

Keywords

Mathematics Subject Classification (2010)

Navigation