Rectangular Summation of Multiple Fourier Series and Multi-parametric Capacity

Abstract

We consider the class of multiple Fourier series associated with functions in the Dirichlet space of the polydisc. We prove that every such series is summable with respect to unrestricted rectangular partial sums, everywhere except for a set of zero multi-parametric logarithmic capacity. Conversely, given a compact set in the torus of zero capacity, we construct a Fourier series in the class which diverges on this set, in the sense of Pringsheim. We also prove that the multi-parametric logarithmic capacity characterizes the exceptional sets for the radial variation and radial limits of Dirichlet space functions. As a by-product of the methods of proof, the results also hold in the vector-valued setting.

References

  1. 1.

    Adams, DR, Hedberg, L.I.: Function Spaces and Potential Theory, Grundlehren der Mathematischen Wissenschaften, vol. 314. Springer, Berlin (1996)

    Google Scholar 

  2. 2.

    Antonov, Yu.N.: Convergence of Fourier series. In: Proceedings of the XX Workshop on Function Theory (Moscow, vol. 2, pp 187–196 (1995)

  3. 3.

    Arcozzi, N., Mozolyako, P., Perfekt, K.-M., Sarfatti, G.: Bi-parameter potential theory and Carleson measures for the Dirichlet space on the bidisc, preprint, arXiv:1811.04990 (2018)

  4. 4.

    Ash, J.M., Welland, G.V.: Convergence, uniqueness, and summability of multiple trigonometric series. Trans. Am. Math. Soc. 163, 401–436 (1972)

    MathSciNet  MATH  Article  Google Scholar 

  5. 5.

    Bénéteau, C., Condori, A.A., Liaw, C., Seco, D., Sola, A.A.: Cyclicity in Dirichlet-type spaces and extremal polynomials II: functions on the bidisk. Pac. J. Math. 276(1), 35–58 (2015)

    MathSciNet  MATH  Article  Google Scholar 

  6. 6.

    Bénéteau, C., Knese, G., Kosiński, Ł., Liaw, C., Seco, D., Sola, A.: Cyclic polynomials in two variables. Trans. Am. Math. Soc. 368(12), 8737–8754 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  7. 7.

    Bergqvist, L.: A note on cyclic polynomials in polydiscs. Anal. Math. Phys. 8(2), 197–211 (2018)

    MathSciNet  MATH  Article  Google Scholar 

  8. 8.

    Beurling, A.: Ensembles exceptionnels. Acta Math. 72, 1–13 (1940)

    MathSciNet  MATH  Article  Google Scholar 

  9. 9.

    Bromwich, T.J.I’A., Hardy, G.H.: Some Extensions to Multiple Series of Abel’s Theorem on the Continuity of Power Series. Proc. London Math. Soc. (2) 2, 161–189 (1905)

    MathSciNet  MATH  Article  Google Scholar 

  10. 10.

    Carleson, L.: On convergence and growth of partial sums of Fourier series. Acta Math. 116, 135–157 (1966)

    MathSciNet  MATH  Article  Google Scholar 

  11. 11.

    El-Fallah, O, Kellay, K, Mashreghi, J, Ransford, T.: A Primer on the Dirichlet Space Cambridge Tracts in Mathematics, vol. 203. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  12. 12.

    Fefferman, C.: On the convergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 744–745 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  13. 13.

    Fefferman, C.: On the divergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 191–195 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  14. 14.

    Holmes, I., Psaromiligkos, G., Volberg, A.: A comparison of box and Carleson conditions on bi-trees, preprint, arXiv:1903.02478 (2019)

  15. 15.

    Kaptanoğlu, H.T.: Möbius-invariant Hilbert spaces in polydiscs. Pac. J. Math. 163(2), 337–360 (1994)

    MathSciNet  MATH  Article  Google Scholar 

  16. 16.

    Karagulyan, G.A.: On the divergence of triangular and eccentric spherical sums of double Fourier series. Mat. Sb. 207(1), 73–92 (2016)

    MathSciNet  MATH  Article  Google Scholar 

  17. 17.

    Lippman, G.E., Shapiro, V.L.: Capacity and absolute Abel summability of multiple Fourier series. J. Approx. Theory 10, 313–323 (1974)

    MathSciNet  MATH  Article  Google Scholar 

  18. 18.

    Mozolyako, P., Psaromiligkos, G., Volberg, A.: Counterexamples for bi-parameter Carleson embedding, preprint, arXiv:1906.11145 (2019)

  19. 19.

    Rudin, W: Function Theory in Polydiscs. W. A. Benjamin Inc., New York-Amsterdam (1969)

    MATH  Google Scholar 

  20. 20.

    Salem, R., Zygmund, A.: Capacity of sets and Fourier series. Trans. Am. Math. Soc. 59, 23–41 (1946)

    MathSciNet  MATH  Article  Google Scholar 

  21. 21.

    Sjölin, P.: Convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 65–90 (1971)

    MathSciNet  MATH  Article  Google Scholar 

  22. 22.

    Tevzadze, N.R.: The convergence of the double Fourier series at a square summable function. Sakharth. SSR Mecn. Akad. Moambe 58, 277–279 (1970)

    MathSciNet  Google Scholar 

  23. 23.

    Zygmund, A.: Trigonometric Series, Vol. I, II. Cambridge Mathematical Library. Cambridge University Press, Cambridge (2002)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the anonymous referee for their suggestions, which helped to improve the exposition. This research was partially supported by EPSRC grant EP/S029486/1.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Karl-Mikael Perfekt.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Perfekt, KM. Rectangular Summation of Multiple Fourier Series and Multi-parametric Capacity. Potential Anal (2020). https://doi.org/10.1007/s11118-020-09861-5

Download citation

Keywords

  • Dirichlet space
  • Polydisc
  • Multiple Fourier series
  • Capacity
  • Multi-parameter

Mathematics Subject Classification (2010)

  • 31B15
  • 32A40