Skip to main content
Log in

On Sublevel Set Estimates and the Laplacian

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Carbery proved that if \(u:\mathbb {R}^{n} \rightarrow \mathbb {R}\) is a positive, strictly convex function satisfying \(\det D^{2}u \geq 1\), then we have the estimate

$$ \left| \left\{x \in \mathbb{R}^{n}: u(x) \leq s \right\} \right| \lesssim_{n} s^{n/2} $$

and this is optimal. We give a short proof that also implies other results. Our main result is an estimate for the sublevel set of functions \(u:[0,1]^{2} \rightarrow \mathbb {R}\) satisfying 1 ≤Δuc for some universal constant c: for any α > 0, we have

$$ \left| \left\{x \in [0,1]^{2} : |u(x)| \leq \varepsilon\right\}\right| \lesssim_{c} \sqrt{\varepsilon} + \varepsilon^{\alpha - \frac12} {\int}_{[0,1]^{2}}{\frac{|\nabla u|}{|u|^{\alpha}} dx}.$$

For ‘typical’ functions, we expect the integral to be finite for α < 1. While Carbery-Christ-Wright have shown that no sublevel set estimates independently of u exist, this result shows that for ‘typical’ functions satisfying \({\Delta } u \sim 1\), we expect the sublevel set to be \(\lesssim \varepsilon ^{1/2-}\). We do not know whether this is sharp or whether similar statements are true in higher dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Akeroyd, J.: Champagne subregions of the disk whose bubbles carry harmonic measure. Math. Ann. 323(2), 267–279 (2002)

    Article  MathSciNet  Google Scholar 

  2. Arhipov, G.I., Karacuba, A.A., Cubarikov, V.N.: Trigonometric integrals. Math. USSR Izvestija 15(2), 211–239 (1980)

    Article  Google Scholar 

  3. Bandle, C.: Isoperimetric Inequalities. Convexity and its Applications, pp 30–48. Birkhauser, Basel (1983)

    Book  Google Scholar 

  4. Banuelos, R., Carroll, T.: The maximal expected lifetime of Brownian motion. Math. Proc. R. Ir. Acad. 111A(1), 1–11 (2011)

    Article  MathSciNet  Google Scholar 

  5. van den Berg, M.: Heat flow and perimeter in \(\mathbb {R}^{m}\). Potential Anal. 39(4), 369–387 (2013)

    Article  MathSciNet  Google Scholar 

  6. Biswas, A., Lőrinczi, J.: Maximum principles and Aleksandrov-Bakelman-Pucci type estimates for non-local Schrödinger equations with exterior conditions. arXiv:1711.09267 (2017)

  7. Bolte, J., Daniilidis, A., Lewis, A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optim. 17(4), 1205–1223 (2007)

    Article  Google Scholar 

  8. Carbery, A.: A uniform sublevel set estimate. harmonic analysis and partial differential equations, pp. 97–103, Contemp Math., 505, Amer. Math. Soc., Providence, RI (2010)

  9. Carbery, A., Christ, M., Wright, J.: Multidimensional van der corput and sublevel set estimates. J. Amer. Math. Soc. 12(4), 981–1015 (1999)

    Article  MathSciNet  Google Scholar 

  10. Carbery, A., Wright, J.: What is van der Corput’s Lemma in higher dimensions? Publ. Mat., pp. 13–26 (2002)

  11. Carbery, A., Mazya, V., Mitrea, M., Rule, D.: The integrability of negative powers of the solution to the Saint Venant problem. Annali della scuola normale di pisa XIII, 465–531 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Carroll, T., Ortega-Cerda, J.: Configurations of balls in euclidean space that brownian motion cannot avoid. Ann. Acad. Sci. Fenn. Math. 32(1), 223–234 (2007)

    MathSciNet  MATH  Google Scholar 

  13. D’Acunto, D., Kurdyka, K.: Explicit bounds for the Łojasiewicz exponent in the gradient inequality for polynomials. Ann. Polo. Math. 87, 51–61 (2005)

    Article  Google Scholar 

  14. Do Carmo, M.: Differential geometry of curves and surfaces. Prentice-hall, Inc., Englewood Cliffs N.J. (1976)

  15. Gardiner, S., Ghergu, M.: Champagne subregions of the unit ball with unavoidable bubbles. Ann. Acad. Sci. Fenn. Math. 35(1), 321–329 (2010)

    Article  MathSciNet  Google Scholar 

  16. Gressman, P.: Uniform geometric estimates of sublevel sets. J. Anal. Math. 115, 251–272 (2011)

    Article  MathSciNet  Google Scholar 

  17. Hansen, W., Netuka, I.: Champagne subdomains with unavoidable bubbles. Adv. Math. 244, 106–116 (2013)

    Article  MathSciNet  Google Scholar 

  18. Katz, N.H.: Self crossing six sided figure problem, New York. J. Math. 5, 121–130 (1999)

    MathSciNet  MATH  Google Scholar 

  19. Katz, N.H., Krop, E., Maggioni, M.: On the box problem. Math. Res. Letters 4, 515–519 (2002)

    Article  MathSciNet  Google Scholar 

  20. Kollar, J.: An Effective Łojasiewicz Inequality for real polynomials. Period. Math. Hung. 38(3), 213–221 (1998)

    Article  Google Scholar 

  21. Lierl, J., Steinerberger, S.: A Local Faber-Krahn inequality and applications to schrodinger’s equation. Comm. PDE 43, 66–81 (2018)

    Article  MathSciNet  Google Scholar 

  22. Łojasiewicz, S.: Ensembles semi-analytiques, preprint IHES (1965)

  23. Łojasiewicz, S.: Sur les trajectoires du gradient d’une fonction analytique, Geometry seminars, 1982–1983 , 115–117, Univ. Stud. Bologna, Bologna (1984)

  24. Łojasiewicz, S.: Une propriete topologique des sous-ensembles analytiques reels. Colloques Internation. du CNRS 117, 87–89 (1962)

    Google Scholar 

  25. O’Donovan, J.: Brownian motion in a ball in the presence of spherical obstacles. Proc. Amer. Math. Soc. 138(5), 1711–1720 (2010)

    Article  MathSciNet  Google Scholar 

  26. Ortega-Cerda, J., Seip, K.: Harmonic measure and uniform densities. Indiana Univ. Math. J. 53(3), 905–923 (2004)

    Article  MathSciNet  Google Scholar 

  27. Pres, J.: Champagne subregions of the unit disc. Proc. Amer. Math. Soc. 140 (11), 3983–3992 (2012)

    Article  MathSciNet  Google Scholar 

  28. Phong, D.H., Stein, E.M., Sturm, J.: Multilinear level set operators, oscillatory integral operators, and Newton polyhedra. Math. Ann. 319, 573–596 (2001)

    Article  MathSciNet  Google Scholar 

  29. Rachh, M., Steinerberger, S.: On the location of maxima of solutions of Schroedinger’s equation. Comm. Pure Appl. Math 71, 1109–1122 (2018)

    Article  MathSciNet  Google Scholar 

  30. Rogers, K.: Sharp van der corput estimates and minimal divided differences. Proc. Amer. Math. Soc. 133, 3543–3550 (2005)

    Article  MathSciNet  Google Scholar 

  31. Steinerberger, S.: Lower bounds on nodal sets of eigenfunctions via the heat flow. Comm. Partial Diff. Eqn 39, 2240–2261 (2014)

    Article  MathSciNet  Google Scholar 

  32. Steinerberger, S.: An endpoint Alexandrov Bakelman Pucci estimate in the plane, Canadian Math. Bull., to appear (2018)

  33. Stein, E.M.: Analysis harmonic princeton university press princeton (1993)

  34. Sz.-Nagy, B: Uber Parallelmengen nichtkonvexer ebener Bereiche. Acta Sci. Math Szeged 20, 36–47 (1959)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stefan Steinerberger.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

S.S. is supported by the NSF (DMS-1763179) and the Alfred P. Sloan Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Steinerberger, S. On Sublevel Set Estimates and the Laplacian. Potential Anal 55, 11–28 (2021). https://doi.org/10.1007/s11118-020-09847-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-020-09847-3

Keywords

Mathematics Subject Classification (2010)

Navigation