Abstract
We introduce the model of two-dimensional continuous random interlacements, which is constructed using the Brownian trajectories conditioned on not hitting a fixed set (usually, a disk). This model yields the local picture of Wiener sausage on the torus around a late point. As such, it can be seen as a continuous analogue of discrete two-dimensional random interlacements (Comets et al. Commun. Math. Phys. 343, 129–164, 2016). At the same time, one can view it as (restricted) Brownian loops through infinity. We establish a number of results analogous to these of Comets and Popov (Ann. Probab. 45, 4752–4785, 2017), Comets et al. (Commun. Math. Phys. 343, 129–164, 2016), as well as the results specific to the continuous case.
This is a preview of subscription content, access via your institution.
References
Abe, Y.: Second order term of cover time for planar simple random walk arXiv:1709.08151 (2017)
Baccelli, F., Kim, K.B., McDonald, D.: Equilibria of a class of transport equations arising in congestion control. Queueing Syst. 55(1), 1–8 (2007)
Baccelli, F., Carofiglio, G., Piancino, M.: Stochastic analysis of scalable TCP. In: Proceedings IEEE INFOCOM 2009, pp 19–27 (2009)
Belius, D., Kistler, N.: The subleading order of two dimensional cover times. Probab. Theory Relat. Fields 167(1), 461–552 (2017)
Belius, D., Rosen, J., Zeitouni, O.: Tightness for the cover time of compact two dimensional manifolds. arXiv:1711.02845 (2017)
Camargo, D., Popov, S.: One-dimensional random interlacements. Stochastic Process. Appl. 128, 2750–2778 (2018)
Chen, H.: Excursions in Classical Analysis. Mathematical Association of America, Washington, DC (2010)
Chetrite, R., Touchette, H.: Nonequilibrium Markov processes conditioned on large deviations. Ann. Inst. Henri Poincaré B Probab. Stat. 16, 2005–2057 (2015)
Černý, J., Teixeira, A.: From random walk trajectories to random interlacements. Ensaios Matemáticos [Mathematical Surveys], vol. 23. Sociedade Brasileira de Matemática, Rio de Janeiro (2012)
Comets, F., Popov, S.: The vacant set of two-dimensional critical random interlacement is infinite. Ann. Probab. 45, 4752–4785 (2017)
Comets, F., Gallesco, C., Popov, S., Vachkovskaia, M.: On large deviations for the cover time of two-dimensional torus. Electr. J. Probab. 18, article 96 (2013)
Comets, F., Popov, S., Vachkovskaia, M.: Two-dimensional random interlacements and late points for random walks. Commun. Math. Phys. 343, 129–164 (2016)
de Bernardini, D.F., Gallesco, C.F., Popov, S.: On uniform closeness of local times of Markov chains and i.i.d. sequences. Stochastic Process. Appl. 128, 3221–3252 (2018)
Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Cover times for Brownian motion and random walks in two dimensions. Ann. Math. (2) 160(2), 433–464 (2004)
Dembo, A., Peres, Y., Rosen, J., Zeitouni, O.: Late points for random walks in two dimensions. Ann. Probab. 34(1), 219–263 (2006)
Dereich, S., Döring, L.: Random interlacements via Kuznetsov measures. arXiv:1501.00649 (2015)
Doob, JL: Classical Potential Theory and Its Probabilistic Counterpart. Springer, Berlin (1984)
Doob, J. L.: Conditional Brownian motion and the boundary limits of harmonic functions. Bull. Soc. Math. France 85, 431–458 (1957)
Drewitz, A., Ráth, B., Sapozhnikov, A.: An Introduction to Random Interlacements. Springer, Berlin (2014)
Goodman, J., den Hollander, F.: Extremal geometry of a Brownian porous medium. Probab. Theory Relat. Fields 160(1–2), 127–174 (2014)
Jacod, J., Shiryaev, A.N.: Limit Theorems for Stochatic Processes. Grundlehren der mathematischen Wissenschaften. Springer, Berlin (2003)
Kingman, J.F.C.: Poisson Processes. Oxford University Press, New York (1993)
Lawler, G., Limic, V.: Random walk: a modern introduction. Cambridge Studies in Advanced Mathematics, 123. Cambridge University Press, Cambridge (2010)
Lawler, G.F., Werner, W.: The Brownian loop soup. Probab. Theory Relat. Fields 128(4), 565–588 (2004)
Lawler, G.F., Schramm, O., Werner, W.: Conformal restriction: the chordal case. J. Am. Math. Soc. 16(4), 917–955 (2003)
Le Gall, J.F.: Some properties of planar Brownian motion. Ecole d’Été de Probabilités de Saint-Flour X–1990. Lecture Notes in Math., 1527, pp 111–235. Springer, Berlin (1992)
Le Jan, Y: Markov Paths, Loops and Fields (Saint-Flour Probability Summer School 2008). Lect. Notes Math. 2026. Springer, Berlin (2011)
Li, X.: Percolative properties of Brownian interlacements and its vacant set. arXiv:1610.08204 (2016)
Li, X., Sznitman, A.-S.: Large deviations for occupation time profiles of random interlacements. Probab. Theory Relat. Fields 161(1–2), 309–350 (2015)
Mörters, P., Peres, Y.: Brownian Motion. Cambridge University Press, Cambridge (2010)
Pitman, J., Yor, M.: Decomposition at the maximum for excursions and bridges of one-dimensional diffusions. In: Ikeda, N., Watanabe, S., Fukushima, M., Kunita, H. (eds.) Itô’s Stochastic Calculus and Probability Theory. Springer, Berlin (1996)
Popov, S., Teixeira, A.: Soft local times and decoupling of random interlacements. J. Eur. Math. Soc. 17(10), 2545–2593 (2015)
Ransford, T.: Potential Theory in the Complex Plane. Cambridge University Press, Cambridge (1995)
Rodriguez, P.-F.: On pinned fields, interlacements, and random walk on \((\mathbb {Z}/N\mathbb {Z})^{2}\). arXiv:1705.01934 To appear in: Probab. Theory Relat. Fields (2017)
Rosen, J.: Intersection local times for interlacements. Stochastic Process. Appl. 124(5), 1849–1880 (2014)
Roynette, B., Yor, M.: Penalising Brownian Paths. Lect. Notes Math. 1969. Springer Science & Business Media (2009)
Sznitman, A.-S.: Vacant set of random interlacements and percolation. Ann. Math. (2) 171(3), 2039–2087 (2010)
Sznitman, A.-S.: Topics in occupation times and Gaussian free fields. Zurich Lect. Adv. Math. European Mathematical Society, Zürich (2012)
Sznitman, A.S.: On scaling limits and Brownian interlacements. Bull. Braz. Math. Soc. (N.S.) 44(4), 555–592 (2013)
Teixeira, A.: Interlacement percolation on transient weighted graphs. Electr. J. Probab. 14, 1604–1627 (2009)
Werner, W.: Sur la forme des composantes connexes du complémentaire de la courbe brownienne plane. Probab. Theory Relat. Fields 98(3), 307–337 (1994)
Williams, D.: Path decomposition and continuity of local time for one-dimensional diffusions. I. Proc. London Math. Soc. 28(3), 738–768 (1974)
Wu, H.: On the occupation times of Brownian excursions and Brownian loops. Séminaire de Probabilités XLIV (Lect. Notes Math. 2046), pp. 149–166 (2012)
Acknowledgements
The authors thank Christophe Sabot for helping with the rigorous definition of the process \(\mathcal {R}\) starting from \(\mathcal {R}_{0}=1\), and Alexandre Eremenko for helping with the proof of Lemma 3.12. The work of S.P. was partially supported by CNPq (grant 300886/2008–0) and FAPESP (grant 2017/02022–2). The work of F.C. was partially supported by CNRS (LPSM, UMR 8001). Both of us have beneficiated from support of Math Amsud programs 15MATH01-LSBS and 19MATH05-RSPSM.
Author information
Authors and Affiliations
Corresponding author
Additional information
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Appendix
Appendix
Proof of Proposition 3.1.
Let a = ∥x∥. Note that,
and that the claim is obviously valid for a = 0, so it remains to prove that
By the change of variable 𝜃 → π − 𝜃 we find that \(I(a)= {\int }_{0}^{\pi } \ln (a^{2}+1+2a\cos \theta ) d\theta \), and so
Then, using the same trick as above (change the variable \(\theta \to \frac {\pi }{2}-\theta \) so that the cosine becomes sine), we find
using Eq. 4.23, and we finally arrive to the following identity:
This implies directly that I(1) = 0; for a < 1 just iterate Eq. 4.24 and use the obvious fact that I(⋅) is continuous at 0. □
We have to mention that other proofs are available as well; see [7, Ch. 20].
Rights and permissions
About this article
Cite this article
Comets, F., Popov, S. Two-Dimensional Brownian Random Interlacements. Potential Anal 53, 727–771 (2020). https://doi.org/10.1007/s11118-019-09786-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-019-09786-8
Keywords
- Brownian motion
- Conditioning
- Transience
- Wiener moustache
- Logarithmic capacity
- Gumbel process
Mathematics Subject Classification (2010)
- Primary: 60J45
- Secondary: 60G55, 60J65, 60K35