Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)
MATH
Google Scholar
Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, p xii+ 403. European Mathematical Society (EMS), Zürich (2011)
Book
Google Scholar
Björn, A., Björn, J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. Rev. Mat. Iberoam. 31(1), 161–214 (2015)
MathSciNet
Article
Google Scholar
Björn, A., Björn, J., Latvala, V.: The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces. J. Anal. Math. 135(1), 59–83 (2018)
MathSciNet
Article
Google Scholar
Björn, A., Björn, J., Latvala, V.: The weak Cartan property for the p-fine topology on metric spaces. Indiana Univ. Math. J. 64(3), 915–941 (2015)
MathSciNet
Article
Google Scholar
Björn, A., Björn, J., Malý, J.: Quasiopen and p-path open sets, and characterizations of quasicontinuity. Potential Anal. 46(1), 181–199 (2017)
MathSciNet
Article
Google Scholar
Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. 34(4), 1197–1211 (2008)
MathSciNet
MATH
Google Scholar
Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)
MathSciNet
Article
Google Scholar
Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics Series. CRC Press, Boca Raton (1992)
MATH
Google Scholar
Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153, p xiv+ 676. Springer, New York (1969)
Google Scholar
Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, p xii+ 240. Birkhäuser, Basel (1984)
Book
Google Scholar
Hajłasz, P.: Sobolev Spaces on Metric-Measure Spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), 173–218, Contemp Math., vol. 338. American Mathematical Society, Providence (2003)
Google Scholar
Hakkarainen, H., Kinnunen, J.: The BV-capacity in metric spaces. Manuscripta Math. 132(1-2), 51–73 (2010)
MathSciNet
Article
Google Scholar
Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext, p x + 140. Springer, New York (2001)
Book
Google Scholar
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original, p xii+ 404. Dover Publications, Inc., Mineola (2006)
MATH
Google Scholar
Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)
MathSciNet
Article
Google Scholar
Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. An approach based on upper gradients, New Mathematical Monographs, vol. 27, p xii+ 434. Cambridge University Press, Cambridge (2015)
Book
Google Scholar
Korte, R., Lahti, P., Li, X., Shanmugalingam, N.: Notions of Dirichlet problem for functions of least gradient in metric measure spaces, to appear in Revista Matemática Iberoamericana
Kuratowski, K.: Introduction to set theory and topology. Completely revised second English edition. First edition translated from the Polish by Leo F. Boron. International Series of Monographs in Pure and Applied Mathematics, Vol. 101. Pergamon Press, Oxford–New York–Toronto, Ont.; PWN—Polish Scientific Publishers, Warsaw, 352 pp. (1972)
Lahti, P.: A Federer-style characterization of sets of finite perimeter on metric spaces. Calc. Var. Partial Differ. Eqs. 56(5, Art. 150), 22 (2017)
MathSciNet
MATH
Google Scholar
Lahti, P.: A notion of fine continuity for BV functions on metric spaces. Potential Anal. 46(2), 279–294 (2017)
MathSciNet
Article
Google Scholar
Lahti, P.: Strong approximation of sets of finite perimeter in metric spaces. Manuscripta Math. 155(3–4), 503–522 (2018)
MathSciNet
Article
Google Scholar
Lahti, P., Malý, L., Shanmugalingam, N.: An analog of the Neumann problem for the 1-Laplace equation in the metric setting: existence, boundary regularity, and stability. Anal. Geom. Metr. Spaces 6, 1–31 (2018)
MathSciNet
Article
Google Scholar
Lahti, P., Shanmugalingam, N.: Fine properties and a notion of quasicontinuity for BV functions on metric spaces. J de Mathématiques Pures et Appliquées 107(2), 150–182 (2017)
MathSciNet
Article
Google Scholar
Malý, J., Ziemer, W.: Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, vol. 51, p xiv+ 291. American Mathematical Society, Providence (1997)
Book
Google Scholar
Miranda, M., Jr.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)
MathSciNet
Article
Google Scholar
Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45 (3), 1021–1050 (2001)
MathSciNet
Article
Google Scholar
Shanmugalingam, N.: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)
MathSciNet
Article
Google Scholar
Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)
Google Scholar