Skip to main content

Quasiopen Sets, Bounded Variation and Lower Semicontinuity in Metric Spaces

Abstract

In the setting of a complete metric space that is equipped with a doubling measure and supports a Poincaré inequality, we show that the total variation of functions of bounded variation is lower semicontinuous with respect to L1-convergence in every 1-quasiopen set. To achieve this, we first prove a new characterization of the total variation in 1-quasiopen sets. Then we utilize the lower semicontinuity to show that the variation measures of a sequence of functions of bounded variation converging in the strict sense are uniformly absolutely continuous with respect to the 1-capacity.

This is a preview of subscription content, access via your institution.

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  2. Björn, A., Björn, J.: Nonlinear Potential Theory on Metric Spaces, EMS Tracts in Mathematics, vol. 17, p xii+ 403. European Mathematical Society (EMS), Zürich (2011)

    Book  Google Scholar 

  3. Björn, A., Björn, J.: Obstacle and Dirichlet problems on arbitrary nonopen sets in metric spaces, and fine topology. Rev. Mat. Iberoam. 31(1), 161–214 (2015)

    MathSciNet  Article  Google Scholar 

  4. Björn, A., Björn, J., Latvala, V.: The Cartan, Choquet and Kellogg properties for the fine topology on metric spaces. J. Anal. Math. 135(1), 59–83 (2018)

    MathSciNet  Article  Google Scholar 

  5. Björn, A., Björn, J., Latvala, V.: The weak Cartan property for the p-fine topology on metric spaces. Indiana Univ. Math. J. 64(3), 915–941 (2015)

    MathSciNet  Article  Google Scholar 

  6. Björn, A., Björn, J., Malý, J.: Quasiopen and p-path open sets, and characterizations of quasicontinuity. Potential Anal. 46(1), 181–199 (2017)

    MathSciNet  Article  Google Scholar 

  7. Björn, A., Björn, J., Shanmugalingam, N.: Quasicontinuity of Newton-Sobolev functions and density of Lipschitz functions on metric spaces. Houston J. Math. 34(4), 1197–1211 (2008)

    MathSciNet  MATH  Google Scholar 

  8. Cheeger, J.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)

    MathSciNet  Article  Google Scholar 

  9. Evans, L.C., Gariepy, R.F.: Measure Theory and Fine Properties of Functions, Studies in Advanced Mathematics Series. CRC Press, Boca Raton (1992)

    MATH  Google Scholar 

  10. Federer, H.: Geometric Measure Theory, Die Grundlehren der mathematischen Wissenschaften, Band, vol. 153, p xiv+ 676. Springer, New York (1969)

    Google Scholar 

  11. Giusti, E.: Minimal Surfaces and Functions of Bounded Variation, Monographs in Mathematics, vol. 80, p xii+ 240. Birkhäuser, Basel (1984)

    Book  Google Scholar 

  12. Hajłasz, P.: Sobolev Spaces on Metric-Measure Spaces, Heat Kernels and Analysis on Manifolds, Graphs, and Metric Spaces (Paris, 2002), 173–218, Contemp Math., vol. 338. American Mathematical Society, Providence (2003)

    Google Scholar 

  13. Hakkarainen, H., Kinnunen, J.: The BV-capacity in metric spaces. Manuscripta Math. 132(1-2), 51–73 (2010)

    MathSciNet  Article  Google Scholar 

  14. Heinonen, J.: Lectures on Analysis on Metric Spaces, Universitext, p x + 140. Springer, New York (2001)

    Book  Google Scholar 

  15. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations, Unabridged republication of the 1993 original, p xii+ 404. Dover Publications, Inc., Mineola (2006)

    MATH  Google Scholar 

  16. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181(1), 1–61 (1998)

    MathSciNet  Article  Google Scholar 

  17. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J.: Sobolev Spaces on Metric Measure Spaces. An approach based on upper gradients, New Mathematical Monographs, vol. 27, p xii+ 434. Cambridge University Press, Cambridge (2015)

    Book  Google Scholar 

  18. Korte, R., Lahti, P., Li, X., Shanmugalingam, N.: Notions of Dirichlet problem for functions of least gradient in metric measure spaces, to appear in Revista Matemática Iberoamericana

  19. Kuratowski, K.: Introduction to set theory and topology. Completely revised second English edition. First edition translated from the Polish by Leo F. Boron. International Series of Monographs in Pure and Applied Mathematics, Vol. 101. Pergamon Press, Oxford–New York–Toronto, Ont.; PWN—Polish Scientific Publishers, Warsaw, 352 pp. (1972)

  20. Lahti, P.: A Federer-style characterization of sets of finite perimeter on metric spaces. Calc. Var. Partial Differ. Eqs. 56(5, Art. 150), 22 (2017)

    MathSciNet  MATH  Google Scholar 

  21. Lahti, P.: A notion of fine continuity for BV functions on metric spaces. Potential Anal. 46(2), 279–294 (2017)

    MathSciNet  Article  Google Scholar 

  22. Lahti, P.: Strong approximation of sets of finite perimeter in metric spaces. Manuscripta Math. 155(3–4), 503–522 (2018)

    MathSciNet  Article  Google Scholar 

  23. Lahti, P., Malý, L., Shanmugalingam, N.: An analog of the Neumann problem for the 1-Laplace equation in the metric setting: existence, boundary regularity, and stability. Anal. Geom. Metr. Spaces 6, 1–31 (2018)

    MathSciNet  Article  Google Scholar 

  24. Lahti, P., Shanmugalingam, N.: Fine properties and a notion of quasicontinuity for BV functions on metric spaces. J de Mathématiques Pures et Appliquées 107(2), 150–182 (2017)

    MathSciNet  Article  Google Scholar 

  25. Malý, J., Ziemer, W.: Fine Regularity of Solutions of Elliptic Partial Differential Equations, Mathematical Surveys and Monographs, vol. 51, p xiv+ 291. American Mathematical Society, Providence (1997)

    Book  Google Scholar 

  26. Miranda, M., Jr.: Functions of bounded variation on “good” metric spaces. J. Math. Pures Appl. (9) 82(8), 975–1004 (2003)

    MathSciNet  Article  Google Scholar 

  27. Shanmugalingam, N.: Harmonic functions on metric spaces. Illinois J. Math. 45 (3), 1021–1050 (2001)

    MathSciNet  Article  Google Scholar 

  28. Shanmugalingam, N.: An extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)

    MathSciNet  Article  Google Scholar 

  29. Ziemer, W.P.: Weakly differentiable functions. Sobolev spaces and functions of bounded variation, Graduate Texts in Mathematics, vol. 120. Springer, New York (1989)

    Google Scholar 

Download references

Acknowledgments

The research was funded by a grant from the Finnish Cultural Foundation. The author wishes to thank Nageswari Shanmugalingam and two anonymous referees for giving helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panu Lahti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lahti, P. Quasiopen Sets, Bounded Variation and Lower Semicontinuity in Metric Spaces. Potential Anal 52, 321–337 (2020). https://doi.org/10.1007/s11118-018-9749-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9749-8

Keywords

  • Metric measure space
  • Function of bounded variation
  • Total variation
  • Quasiopen set
  • Lower semicontinuity
  • Uniform absolute continuity

Mathematics Subject Classification (2010)

  • 30L99
  • 31E05
  • 26B30