Skip to main content
Log in

Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Finland)

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, J., Pérez, C.: Estimates with \(A_{\infty }\) weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8(1), 123–133 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39(1), 23–50 (2014)

    Article  MathSciNet  Google Scholar 

  3. Bernardis, A.L., Lorente, M., Martín Reyes, F.J., Martínez, M.T., de la Torre, A., Torrea, J.L.: Differential transforms in weighted spaces. J. Fourier Anal. Appl. 12(1), 83–103 (2006)

    Article  MathSciNet  Google Scholar 

  4. Cabral, A., Pradolini, G., Ramos, W.: Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context. J. Math. Anal. Appl. 436(1), 620–636 (2016)

    Article  MathSciNet  Google Scholar 

  5. Calderón, A.P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53, 1092–1099 (1965)

    Article  MathSciNet  Google Scholar 

  6. Christ, M.: Lectures on singular integral operators, volume 77 of Reg. In: Conferences Series in Math. Amer. Math. Soc., Providence. RI (1990)

  7. Coifman, R., Meyer, Y.: Au Delà Des Opérateurs Pseudo-Différentiels, volume 57 of Astérisque Société Mathématique de France, Paris. With an English summary (1978)

  8. Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(3), xi, 177–202 (1978)

    Article  Google Scholar 

  9. Coifman, R.R.: Distribution function inequalities for singular integrals. Proc. Nat. Acad. Sci. USA 69(10), 2838–2839 (1972)

    Article  MathSciNet  Google Scholar 

  10. Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)

    Article  MathSciNet  Google Scholar 

  11. Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)

    Article  MathSciNet  Google Scholar 

  12. Cruz-Uribe, D., Fiorenza, A. Applied and Numerical Harmonic Analysis: variable Lebesgue spaces. Foundations and harmonic analysis. Springer, Heidelberg (2013)

  13. Cruz-Uribe, D., Martell, J., Pérez, C.: Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math. 216(2), 647–676 (2007)

    Article  MathSciNet  Google Scholar 

  14. Cruz-Uribe, D., Wang, L.-A.D.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 369(2), 1205–1235 (2017)

    Article  MathSciNet  Google Scholar 

  15. Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Math. Springer, Heidelberg (2011)

    MATH  Google Scholar 

  16. García-Cuerva, J., de Francia, J.L.R.: Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 104 (1985)

    Google Scholar 

  17. García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J.L.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (4), 1397–1420 (1991)

    Article  MathSciNet  Google Scholar 

  18. Guo, W., He, J., Wu, H., Yang, D.: Boundedness and compactness of commutators associated with lipschitz functions. arXiv:1801.06064

  19. Harboure, E., Salinas, O., Viviani, B.: Orlicz boundedness for certain classical operators. Colloq. Math. 91(2), 263–282 (2002)

    Article  MathSciNet  Google Scholar 

  20. Harboure, E., Segovia, C., Torrea, J.L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. Math. 41(4), 676–700 (1997)

    Article  MathSciNet  Google Scholar 

  21. Holmes, I., Wick, B.: Two weight inequalities for iterated commutators with calderón-zygmund operators. arXiv:1509.03769

  22. Jones, R.L., Rosenblatt, J.: Differential and ergodic transforms. Math. Ann. 323(3), 525–546 (2002)

    Article  MathSciNet  Google Scholar 

  23. Kováčik, O., Rákosník, J.: On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J. 41(4), 592–618 (1991)

    MathSciNet  MATH  Google Scholar 

  24. Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Amer. Math Soc. 255, 343–362 (1979)

    Article  MathSciNet  Google Scholar 

  25. Lerner, A., Ombrosy, S., Rivera-Ríos, I.: Commutators of singular integrals revisited. arXiv:1709.04724

  26. Lorente, M., Martell, J.M., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342(2), 1399–1425 (2008)

    Article  MathSciNet  Google Scholar 

  27. Lorente, M., Riveros, M.S., De la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11(5), 497–509 (2005)

    Article  MathSciNet  Google Scholar 

  28. Meng, Y., Yang, D.: Boundedness of commutators with Lipschitz functions in non-homogeneous spaces Taiwanese. J. Math. 10(6), 1443–1464 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math Soc. 192, 261–274 (1974)

    Article  MathSciNet  Google Scholar 

  30. Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/76)

    Article  MathSciNet  Google Scholar 

  31. Musielak, J.: Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Math. Springer, Berlin (1983)

    Google Scholar 

  32. Pérez, C.: Weighted norm inequalities for singular integral operators. J. Lond. Math. Soc. (2) 49(2), 296–308 (1994)

    Article  MathSciNet  Google Scholar 

  33. Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)

    Article  MathSciNet  Google Scholar 

  34. Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997)

    Article  MathSciNet  Google Scholar 

  35. Pradolini, G.G., Ramos, W.A.: Characterization of Lipschitz functions via the commutators of singular and fractional integral operators in variable Lebesgue spaces. Potential Anal. 46(3), 499–525 (2017)

    Article  MathSciNet  Google Scholar 

  36. Ramseyer, M., Salinas, O., Viviani, B.: Fractional integrals and Riesz transforms acting on certain Lipschitz spaces. Michigan Math. J. 65(1), 35–56 (2016)

    Article  MathSciNet  Google Scholar 

  37. Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón-Zygmund theory for operator-valued kernels. Adv. in Math. 62(1), 7–48 (1986)

    Article  MathSciNet  Google Scholar 

  38. Watson, D.K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60(2), 389–399 (1990)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luciana Melchiori.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Melchiori, L., Pradolini, G. Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces. Potential Anal 51, 579–601 (2019). https://doi.org/10.1007/s11118-018-9726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9726-2

Keywords

Mathematics Subject Classification (2010)

Navigation