Abstract
We obtain boundedness results for the higher order commutators of singular integral operators between weighted Lebesgue spaces, including Lp-BMO and Lp-Lipschitz estimates. The kernels of such operators satisfy certain regularity condition, and the symbol of the commutator belongs to a Lipschitz class. We also deal with commutators of singular integral operators with less regular kernels satisfying a Hörmander’s type inequality. Moreover, we give a characterization result involving symbols of the commutators and continuity results for extreme values of p. Finally, by extrapolation techniques, we derive different results in the variable exponent context.
Similar content being viewed by others
References
Alvarez, J., Pérez, C.: Estimates with \(A_{\infty }\) weights for various singular integral operators. Boll. Un. Mat. Ital. A (7) 8(1), 123–133 (1994)
Bernardis, A., Dalmasso, E., Pradolini, G.: Generalized maximal functions and related operators on weighted Musielak-Orlicz spaces. Ann. Acad. Sci. Fenn. Math. 39(1), 23–50 (2014)
Bernardis, A.L., Lorente, M., Martín Reyes, F.J., Martínez, M.T., de la Torre, A., Torrea, J.L.: Differential transforms in weighted spaces. J. Fourier Anal. Appl. 12(1), 83–103 (2006)
Cabral, A., Pradolini, G., Ramos, W.: Extrapolation and weighted norm inequalities between Lebesgue and Lipschitz spaces in the variable exponent context. J. Math. Anal. Appl. 436(1), 620–636 (2016)
Calderón, A.P.: Commutators of singular integral operators. Proc. Nat. Acad. Sci. U.S.A. 53, 1092–1099 (1965)
Christ, M.: Lectures on singular integral operators, volume 77 of Reg. In: Conferences Series in Math. Amer. Math. Soc., Providence. RI (1990)
Coifman, R., Meyer, Y.: Au Delà Des Opérateurs Pseudo-Différentiels, volume 57 of Astérisque Société Mathématique de France, Paris. With an English summary (1978)
Coifman, R., Meyer, Y.: Commutateurs d’intégrales singulières et opérateurs multilinéaires. Ann. Inst. Fourier (Grenoble) 28(3), xi, 177–202 (1978)
Coifman, R.R.: Distribution function inequalities for singular integrals. Proc. Nat. Acad. Sci. USA 69(10), 2838–2839 (1972)
Coifman, R.R., Fefferman, C.: Weighted norm inequalities for maximal functions and singular integrals. Studia Math. 51, 241–250 (1974)
Cruz-Uribe, D., Diening, L., Hästö, P.: The maximal operator on weighted variable Lebesgue spaces. Fract. Calc. Appl. Anal. 14(3), 361–374 (2011)
Cruz-Uribe, D., Fiorenza, A. Applied and Numerical Harmonic Analysis: variable Lebesgue spaces. Foundations and harmonic analysis. Springer, Heidelberg (2013)
Cruz-Uribe, D., Martell, J., Pérez, C.: Sharp two-weight inequalities for singular integrals, with applications to the Hilbert transform and the Sarason conjecture. Adv. Math. 216(2), 647–676 (2007)
Cruz-Uribe, D., Wang, L.-A.D.: Extrapolation and weighted norm inequalities in the variable Lebesgue spaces. Trans. Amer. Math. Soc. 369(2), 1205–1235 (2017)
Diening, L., Harjulehto, P., Hästö, P., Růžička, M.: Lebesgue and Sobolev Spaces with Variable Exponents, volume 2017 of Lecture Notes in Math. Springer, Heidelberg (2011)
García-Cuerva, J., de Francia, J.L.R.: Weighted norm inequalities and related topics, volume 116 of North-Holland Mathematics Studies. North-Holland Publishing Co., Amsterdam. Notas de Matemática [Mathematical Notes], 104 (1985)
García-Cuerva, J., Harboure, E., Segovia, C., Torrea, J.L.: Weighted norm inequalities for commutators of strongly singular integrals. Indiana Univ. Math. J. 40 (4), 1397–1420 (1991)
Guo, W., He, J., Wu, H., Yang, D.: Boundedness and compactness of commutators associated with lipschitz functions. arXiv:1801.06064
Harboure, E., Salinas, O., Viviani, B.: Orlicz boundedness for certain classical operators. Colloq. Math. 91(2), 263–282 (2002)
Harboure, E., Segovia, C., Torrea, J.L.: Boundedness of commutators of fractional and singular integrals for the extreme values of p. Illinois J. Math. 41(4), 676–700 (1997)
Holmes, I., Wick, B.: Two weight inequalities for iterated commutators with calderón-zygmund operators. arXiv:1509.03769
Jones, R.L., Rosenblatt, J.: Differential and ergodic transforms. Math. Ann. 323(3), 525–546 (2002)
Kováčik, O., Rákosník, J.: On spaces Lp(x) and Wk,p(x). Czechoslovak Math. J. 41(4), 592–618 (1991)
Kurtz, D.S., Wheeden, R.L.: Results on weighted norm inequalities for multipliers. Trans. Amer. Math Soc. 255, 343–362 (1979)
Lerner, A., Ombrosy, S., Rivera-Ríos, I.: Commutators of singular integrals revisited. arXiv:1709.04724
Lorente, M., Martell, J.M., Riveros, M.S., de la Torre, A.: Generalized Hörmander’s conditions, commutators and weights. J. Math. Anal. Appl. 342(2), 1399–1425 (2008)
Lorente, M., Riveros, M.S., De la Torre, A.: Weighted estimates for singular integral operators satisfying Hörmander’s conditions of Young type. J. Fourier Anal. Appl. 11(5), 497–509 (2005)
Meng, Y., Yang, D.: Boundedness of commutators with Lipschitz functions in non-homogeneous spaces Taiwanese. J. Math. 10(6), 1443–1464 (2006)
Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math Soc. 192, 261–274 (1974)
Muckenhoupt, B., Wheeden, R.L.: Weighted bounded mean oscillation and the Hilbert transform. Studia Math. 54(3), 221–237 (1975/76)
Musielak, J.: Orlicz spaces and modular spaces, volume 1034 of Lecture Notes in Math. Springer, Berlin (1983)
Pérez, C.: Weighted norm inequalities for singular integral operators. J. Lond. Math. Soc. (2) 49(2), 296–308 (1994)
Pérez, C.: Endpoint estimates for commutators of singular integral operators. J. Funct. Anal. 128(1), 163–185 (1995)
Pérez, C.: Sharp estimates for commutators of singular integrals via iterations of the Hardy-Littlewood maximal function. J. Fourier Anal. Appl. 3(6), 743–756 (1997)
Pradolini, G.G., Ramos, W.A.: Characterization of Lipschitz functions via the commutators of singular and fractional integral operators in variable Lebesgue spaces. Potential Anal. 46(3), 499–525 (2017)
Ramseyer, M., Salinas, O., Viviani, B.: Fractional integrals and Riesz transforms acting on certain Lipschitz spaces. Michigan Math. J. 65(1), 35–56 (2016)
Rubio de Francia, J.L., Ruiz, F.J., Torrea, J.L.: Calderón-Zygmund theory for operator-valued kernels. Adv. in Math. 62(1), 7–48 (1986)
Watson, D.K.: Weighted estimates for singular integrals via Fourier transform estimates. Duke Math. J. 60(2), 389–399 (1990)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Melchiori, L., Pradolini, G. Commutators of Singular Integrals with Kernels Satisfying Generalized Hörmander Conditions and Extrapolation Results to the Variable Exponent Spaces. Potential Anal 51, 579–601 (2019). https://doi.org/10.1007/s11118-018-9726-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-018-9726-2
