An Approach to Stochastic Integration in General Separable Banach Spaces
Article
First Online:
Received:
Accepted:
- 14 Downloads
Abstract
We suggest a new approach to stochastic integration in infinite-dimensional spaces that is based on representing random variables on Banach spaces as real-valued processes on an interval. We prove stochastic integrability of operator-valued processes on general separable Banach spaces under the conditions that do not depend on the norm of the space and show how our methods can be applied to studying infinite-dimensional stochastic differential equations. In particular, our results provide a natural construction of the stochastic integral in abstract Wiener spaces.
Keywords
Infinite-dimensional stochastic analysis Stochastic integral Stochastic differential equations Gaussian measuresMathematics Subject Classification (2010)
60H05 60G15 60H10Preview
Unable to display preview. Download preview PDF.
References
- 1.Bogachev, V., Smolyanov, O.: Topological Vector Spaces and their Applications, Springer (2017)Google Scholar
- 2.Bogachev, V.I.: Gaussian Measures, vol. 62. AMS (1998). https://doi.org/10.1090/surv/062
- 3.Brooks, J., Dinculeanu, N.: Stochastic integration in banach spaces. Adv. Math. 81(1), 99–104 (1990). https://doi.org/10.1016/0001-8708(90)90006-9 MathSciNetCrossRefMATHGoogle Scholar
- 4.Brzeźniak, Z., Carroll, A.: Approximations of the wong–zakai type for stochastic differential equations in m-type 2 banach spaces with applications to loop spaces. In: Séminaire de Probabilités XXXVII, pp 251–289. Springer, Berlin (2003), https://doi.org/10.1007/978-3-540-40004-2_11
- 5.Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Cambridge University Press, Cambridge (2014). https://doi.org/10.1017/CBO9781107295513 CrossRefMATHGoogle Scholar
- 6.Dettweiler, E.: Banach space valued processes with independent increments and stochastic integration. In: Probability in Banach Spaces IV, pp 54–83 (1983), https://doi.org/10.1007/bfb0064263
- 7.Di Girolami, C., Fabbri, G., Russo, F.: The covariation for banach space valued processes and applications. Metrika 77(1), 51–104 (2014). https://doi.org/10.1007/s00184-013-0472-6 MathSciNetCrossRefMATHGoogle Scholar
- 8.Dinculeanu, N.: Vector Integration and Stochastic Integration in Banach Spaces, vol. 48. Wiley, New York (2000). https://doi.org/10.1002/9781118033012 CrossRefMATHGoogle Scholar
- 9.Kallenberg, O.: Foundations of modern probability. Springer, Berlin (2006). https://doi.org/10.1007/b98838 MATHGoogle Scholar
- 10.Kelley, J.L.: General Topology. Springer, Berlin (1975)MATHGoogle Scholar
- 11.Kuo, H.H.: Stochastic integrals in abstract wiener space. Pac. J. Math. 41(2), 469–483 (1972)MathSciNetCrossRefMATHGoogle Scholar
- 12.Ledoux, M., Talagrand, M.: Probability in Banach Spaces: Isoperimetry and Processes. Springer, Berlin (1991). https://doi.org/10.1007/978-3-642-20212-4 CrossRefMATHGoogle Scholar
- 13.Metivier, M., Pellaumail, J.: Stochastic Integration. Probability and Mathematical Statistics. Academic, New York (1980)MATHGoogle Scholar
- 14.Neerven, J.V., Veraar, M., Weis, L.: Stochastic integration in banach spaces–a survey. In: Stochastic Analysis: A Series of Lectures, pp 297–332. Springer, Berlin (2015). https://doi.org/10.1007/978-3-0348-0909-2_11
- 15.Neerven, J.V., Weis, L.: Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion. Potential Anal. 29(1), 65–88 (2008). https://doi.org/10.1007/s11118-008-9088-2 MathSciNetCrossRefMATHGoogle Scholar
- 16.Ondreját, M.: Integral representations of cylindrical local martingales in every separable banach space. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 10(03), 365–379 (2007). https://doi.org/10.1142/S0219025707002816 MathSciNetCrossRefMATHGoogle Scholar
- 17.Talagrand, M.: Upper and Lower Bounds for Stochastic Processes: Modern Methods and Classical Problems, vol. 60. Springer, Berlin (2014). https://doi.org/10.1007/978-3-642-54075-2 CrossRefMATHGoogle Scholar
- 18.Teichmann, J.: Another approach to some rough and stochastic partial differential equations. Stochastics Dyn. 11(02n03), 535–550 (2011). https://doi.org/10.1142/S0219493711003437 MathSciNetCrossRefMATHGoogle Scholar
- 19.Vakhania, N., Tarieladze, V., Chobanyan, S.: Probability Distributions on Banach Spaces, vol. 14. Springer, Berlin (1987). https://doi.org/10.1007/978-94-009-3873-1 CrossRefGoogle Scholar
- 20.Veraar, M., Yaroslavtsev, I.: Cylindrical continuous martingales and stochastic integration in infinite dimensions. Electron. J. Probab. 21 (2016). https://doi.org/10.1214/16-EJP7
Copyright information
© Springer Science+Business Media B.V., part of Springer Nature 2018