Abstract
In this article we study nonnegative solutions of quasilinear equation model of which is
Under the natural assumptions on the functions f, V, h and g we prove the Harnack inequality with constant independent of the solution. In the case g(x) ≡ V (x) we obtain an analogue of the well known Kilpeläinen-Malý sub-bound.
This is a preview of subscription content, access via your institution.
References
Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Comm. Pure Appl. Math. 35, 209–273 (1982)
Benilan, P., Brezis, H., Crandall, M.: A semilinear equation in L 1(R N). Ann. Scuola Norm. Sup. Pisa 2, 523–555 (1975)
Biroli, M.: Nonlinear Kato measures and nonlinear subelliptic Schrödinger problems. Rend. Accad. Naz. Sci. XL Mem. Mat. Appl. 21(5), 235–252 (1997)
Biroli, M.: Schrödinger type and relaxed Dirichlet problems for the subelliptic p-Laplacian. Potential Anal. 15, 1–16 (2001)
Chiarenza, F., Fabes, E., Garofalo, N.: Harnack’s inequality for Schrödinger operators and the continuity of solutions. Proc. Amer. Math. Soc. 98, 415–425 (1986)
De Giorgi, E.: Sulla differenziabilit’e l’analicit delle estremali degli integrali multipli regolari. Mem. Accad. Sci Torino, cl. Sci. Fis. Mat. Nat. 3, 25–43 (1957)
Felmer, P., Montenegro, M., Quaas, A.: A note on the strong maximum principle and the compact support principle. J. Diff. Equat. 246, 39–49 (2009)
Gilbarg, D., Trudinger, N.: Elliptic Partial Differential Equations of Second Order, 2nd edn. Springer-Verlag, Berlin (1983)
Giusti, E.: Metodi diretti nel calcolo delle variazioni. Unione Matematica Italiana, Bologna (1994)
Gutierrez, C.E.: Harnack’s inequality for degenerate Schrödinger operators. Trans. Amer. Math. Soc. 112, 403–419 (1989)
Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford Math. Monographs. Clarendon Press, Oxford Univ. Press, New York (1993)
Julin, V.: Generalized Harnack inequality for nonhomogeneous elliptic equations. Arch. Rat. Mech. Anal. 216, 673–702 (2015)
Julin, V.: Generalized Harnack inequality for semilinear elliptic equations. J. Math. Pures Appl. 106, 877–904 (2016)
Keller, J.B.: On solutions of u = f(u).. Comm. Pure Appl. Math. 10, 503–510 (1957)
Kilpeläinen, T., Malý, J.: The Wiener test and potential estimates for quasilinear elliptic equations. Acta Math. 172, 137–161 (1994)
Kon’kov, A.A.: Comparison theorems for elliptic inequalities with a non-linearity in the principal part. J. Math. Anal. Appl. 325, 1013–1041 (2007)
Kon’kov, A.A.: On comparison theorems for elliptic inequalities. J. Math. Anal. Appl. 388, 102–124 (2012)
Kovalevsky, A.A., Skrypnik, I.I., Shishkov, A.E.: Singular Solutions of Nonlinear Elliptic and Prabolic Equations. De Gruyter, Series in Nonl. Analysis and Applications, Berlin (2016)
Krylov, N.V., Safonov, M.V.: A certain property of solutions of parabolic equations with measurable coefficients. Izv. Akad. Nauk SSSR Ser. Mat. 44:1, 161–175 (1980)
Kurata, K.: Continuity and Harnack’s inequality for solutions of elliptic partial differential equations of second order. Indiana Univ. Math. J. 43, 411–440 (1994)
Ladyzhenskaya, O.A., Ural’tseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)
Marcus, M., Veron, L.: Nonlinear Second Order Elliptic Equations Involving Measures. Walter de Gruyter GmbH & Co KG, Berlin (2014)
Mohammed, A.: Harnack’s inequality for solutions of some degenerate elliptic equations. Rev. Mat. Iberoamericana 18, 325–354 (2002)
Moser, J.: On Harnack’s theorem for elliptic differential equations. Comm. Pure Appl. Math. 14, 577–591 (1961)
Moser, J.: A Harnack inequality for parabolic differential equations. Comm. Pure Appl. Math. 17, 101–134 (1964)
Nash, J.: Continuity of solutions of parabolic and elliptic equations. Amer. J. Math. 80, 931–954 (1958)
Osserman, R.: On the inequality u f(u). Pac. J. Math. 7, 1641–1647 (1957)
Pucci, P., Serrin, J.: The Harnack inequality in R 2 for quasilinear elliptic equations. J. d’Anal. Math. 85, 307–321 (2001)
Pucci, P., Serrin, J.: The strong maximum principle revisted. J. Diff. Equat. 196, 1–66 (2004)
Pucci, P., Serrin, J.: A note on the strong maximum principle for elliptic differential inequalities. J. Math. Pures Appl. 79, 57–71 (2000)
Radulescu, V.D.: Singular Phenomena in Nonlinear Elliptic Problems: From Blow-Up Boundary Solutions to Equations with Singular Nonlinearities. Handb. Differ. Equat., North-Holland (2007)
Serrin, J.: Local behaviour of solutions of quasilinear equations. Acta Math. 111, 247–302 (1964)
Shan, M.O., Skrypnik, I.I.: Keller-Osserman a priori estimates and the Harnack inequality for quasilinear elliptic and parabolic equations with absorption term. Nonlinear Anal., to appear
Skrypnik, I.I.: The Harnack inequality for a nonlinear elliptic equation with coefficients from the Kato class. Ukr. Math. Visn. 2, 219–235 (2005). (in Russian); transl. in: Ukr. Math. Bull. 2(2), 223-238 (2005)
Trudinger, N.: Pointwise estimates and quasilinear parabolic equations. Comm. Pure Appl. Math. 21, 205–226 (1968)
Vazquez, J.L.: A strong maximum principle for some quasilinear elliptic equations. Appl. Math. Optim. 12, 191–202 (1984)
Veron, L.: Singularities of Solution of Second Order Quasilinear Equations. Pitman Research Notes in Mathematics Series, Longman (1996)
Acknowledgements
This work is supported by grant of Ministry of Education and Science of Ukraine (grant number is 0118U003138).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Skrypnik, I.I. Harnack’s Inequality for Quasilinear Elliptic Equations with Singular Absorption Term. Potential Anal 50, 521–539 (2019). https://doi.org/10.1007/s11118-018-9691-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11118-018-9691-9
Keywords
- Quasilinear elliptic equations
- Singular absorption term
- Harnack’s inequality
Mathematics Subject Classification (2010)
- 35B09
- 35B40
- 35B45
- 35B65