Skip to main content
Log in

Stopping Time Convergence for Processes Associated with Dirichlet Forms

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Convergence is proved for solutions un of Dirichlet problems in regions with many small excluded sets (holes), as the holes become smaller and more numerous. The problem is formulated probabilistically in the context of general Dirichlet forms, for random and nonrandom excluded sets. Sufficient conditions are given in Theorem 2.1 under which the sequence of entrance times or hitting times of the excluded sets converges in the stable topology. Convergence in the stable topology is a strengthened form of convergence in distribution, introduced by Rényi. Stable convergence of the entrance times implies convergence of the solutions un of the corresponding Dirichlet problems. Theorem 2.1 applies to Dirichlet forms such that the Markov process associated with the form has continuous paths and satisfies an absolute continuity condition for occupation time measures (Eq. 2.4). Conditions for convergence are formulated in terms of the sum of the expectations of the equilibrium measures for the excluded sets. The proof of convergence uses the fact that any martingale with respect to the natural filtration of the process must be continuous. In the case that the excluded sets are iid random, Theorem 2.1 strengthens previous results for the classical Brownian motion setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balzano, M.: Random relaxed Dirichlet problems. Annali di Matematica Pura Applicata 153, 133–174 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  2. Balzano, M., Notarantonio, L: On the asymptotic behaviour of Dirichlet problems in a Riemannian manifold less random holes. Rend. Sem. Mat. Univ. Padova 100, 249–282 (1998)

    MathSciNet  MATH  Google Scholar 

  3. Baxter, J.R., Chacon, R.V.: Compactness of stopping times. Theor. Probab. 40, 169–181 (1977)

    MathSciNet  MATH  Google Scholar 

  4. Baxter, J.R., Chacon, R.V., Jain, N.C.: Weak limits of stopped diffusions. Trans. Am. Math. Soc. 293, 767–792 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  5. Baxter, J.R., Dal Maso, G., Mosco, U.: Stopping times and Γ-convergence. Trans. Am. Math. Soc. 303, 1–38 (1987)

    MathSciNet  MATH  Google Scholar 

  6. Baxter, J.R., Jain, N.C.: Asymptotic capacities for finely diffused bodies and stopped diffusions. Ill. J. Math. 31, 469–495 (1987)

    MATH  Google Scholar 

  7. Biroli, M., Mosco, U.: A Saint-Venant type principle for dirichlet forms on discontinuous media. Annali di Matematica pura et applicata (IV) 169, 121–181 (1995)

    MathSciNet  MATH  Google Scholar 

  8. Biroli, M., Tchou, N.A.: Asymptotic behaviour of relaxed Dirichlet problems involving a dirichlet-poincaré form. Zeitschrift für Analysis und ihre Anwendung 16, 281–309 (1997)

    Article  MATH  Google Scholar 

  9. Chen, Z.-Q., Fukushima, M.: Symmetric Markov Processes, Time Change, and Boundary Theory. Princeton University Press, Princeton (2012)

    MATH  Google Scholar 

  10. Dal Maso, G.: Γ-convergence and μ-capacities. Annali della Scuola Normale Superiore di Pisa - Cl. Sci. 14, 423–464 (1987)

    MathSciNet  MATH  Google Scholar 

  11. Dal Maso, G., De Cicco, V., Notarantonio, L., Tchou, N.A.: Limits of variational problems for Dirichlet forms in varying domains. J. Math. Pures Appl. 77, 89–116 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  12. Dal Maso, G., Garroni, A: The capacity method for asymptotic Dirichlet problems. Asymptot. Anal. 15, 299–324 (1997)

    MathSciNet  MATH  Google Scholar 

  13. Dal Maso, G., Mosco, U.: Wiener’s criterion and Γ-convergence. Appl. Math. Optim. 15, 15–63 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  14. Edgar, G.A., Millet, A., Sucheston, L: On compactness and optimality of stopping times. In: Martingale Theory in Harmonic Analysis and Banach Spaces, Lecture Notes in Math, vol. 939, pp. 36–61. Springer, Berlin-New York (1982)

  15. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes, 2nd edn. de Gruyter, Berlin (2011)

    MATH  Google Scholar 

  16. Getoor, R.K.: Measures not charging semipolars and equations of Schrödinger type. Potential Anal. 4, 79–100 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Häusler, E., Luschgy, H.: Stable Convergence and Stable Limit Theorems. Springer International Publishing, Switzerland (2015)

    Book  MATH  Google Scholar 

  18. Kac, M.: Probabilistic methods in some problems of scattering theory. Rocky Mountain J. of Mathematics 4, 511–538 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  19. Khruslov, E.: The method of orthogonal projections and the Dirichlet problems in domains with a fine-grained boundary. Math. USSS-Sb. 17, 37–59 (1972)

    Article  MATH  Google Scholar 

  20. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Processes I, 2nd edn. Springer, Berlin (2001)

    Book  Google Scholar 

  21. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-symmetric) Dirichlet Forms. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  22. Mataloni, S., Tchou, N.A.: Limits of Relaxed Dirichlet problems involving a non symmetric Dirichlet form. Annali di Matematica 179, 65–93 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meyer, P.-A.: Convergence faible et compacité des temps d’ârret D’àpres Baxter Et Chacon. In: Sáminaire De Probabilités, XII, Univ. De Strasbourg, Lecture Notes in Mathematics, vol. 649. Springer, New York (1978)

  24. Nielsen, M.: Stable Convergence and Markov Processes, University of Minnesota, ProQuest, UMI Dissertations Publishing (2010)

  25. Oshima, Y.: Semi-Dirichlet Forms and Markov Processes. De Gruyter, Berlin (2013)

    Book  MATH  Google Scholar 

  26. Papanicolaou, G.C., Varadhan, S.R.S.: Diffusion in regions with many small holes. In: Grigelionis, B. (ed.) Stochastic Differential Systems-Filtering and Control, Lecture Notes in Control and Information Sciences, vol. 25, pp. 190–206. Springer, New York (1980)

  27. Rauch, J., Taylor, M.: Potential and scattering theory on wildly perturbed domains. J. Funct. Anal. 18, 27–59 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  28. Rényi, A.: On stable sequences of events. Sankhyā Ser. A 25, 293–302 (1963)

    MathSciNet  MATH  Google Scholar 

  29. Stroock, D.W.: Diffusion semigroups corresponding to uniformly elliptic divergence form operators. Séminaire de probabilités de Strasbourg 22, 316–347 (1988)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. R. Baxter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baxter, J.R., Hernandez, M.N. Stopping Time Convergence for Processes Associated with Dirichlet Forms. Potential Anal 50, 245–277 (2019). https://doi.org/10.1007/s11118-018-9681-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-018-9681-y

Keywords

Mathematics Subject Classification (2010)

Navigation