Skip to main content

Advertisement

Log in

Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy–Sobolev -type Inequalities

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Let X be a metric space equipped with a doubling measure. We consider weights w(x) = dist(x,E)α, where E is a closed set in X and \(\alpha \in \mathbb {R}\). We establish sharp conditions, based on the Assouad (co)dimension of E, for the inclusion of w in Muckenhoupt’s Ap classes of weights, 1 ≤ p < . With the help of general Ap-weighted embedding results, we then prove (global) Hardy–Sobolev inequalities and also fractional versions of such inequalities in the setting of metric spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aikawa, H.: Quasiadditivity of Riesz capacity. Math. Scand. 69, 15–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Aimar, H., Carena, M., Durán, R., Toschi, M.: Powers of distances to lower dimensional sets as Muckenhoupt weights. Acta Math. Hungar. 143, 119–137 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Björn, A., Björn, J.: Nonlinear potential theory on metric spaces. EMS Tracts in Mathematics 17. European Mathematical Society (EMS). Zürich (2011)

  4. Bonk, M., Heinonen, J., Rohde, S.: Doubling conformal densities. J. Reine Angew. Math. 541, 117–141 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Bishop, C. J., Tyson, J. T.: Conformal dimension of the antenna set. Proc. Amer. Math. Soc. 129, 3631–3636 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durán, R. G., López García, F.: Solutions of the divergence and analysis of the Stokes equations in planar Hölder-α domains. Math. Models Methods Appl. Sci. 20, 95–120 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Dyda, B., Vähäkangas, A. V.: A framework for fractional Hardy inequalities. Ann. Acad. Sci. Fenn. Math. 39, 675–689 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  8. Edmunds, D., Hurri-Syrjänen, R., Vähäkangas, A. V.: Fractional Hardy-type inequalities in domains with uniformly fat complement. Proc. Amer. Math. Soc. 142, 897–907 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fraser, J. M.: Assouad type dimensions and homogeneity of fractals. Trans. Amer. Math. Soc. 366, 6687–6733 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcá-Cuerva, J., Rubio de Francia, J. L.: Weighted Norm Inequalities and Related Topics. North-Holland, Amsterdam (1985)

    MATH  Google Scholar 

  11. Gehring, F. W.: The L p-integrability of the partial derivatives of a quasiconformal mapping. Acta Math. 130, 265–277 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hajasz, P., Koskela, P.: Sobolev met Poincaré. Mem. Amer. Math. Soc., 145 (2000)

  13. Heinonen, J.: Lectures on Analysis in Metric Spaces. Universitext. Springer-Verlag, New York (2001)

    Book  MATH  Google Scholar 

  14. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Oxford University Press, Oxford (1993)

    MATH  Google Scholar 

  15. Heinonen, J., Koskela, P., Shanmugalingam, N., Tyson, J. T.: Sobolev spaces on metric measure spaces: An approach based on upper gradients. New Mathematical Monographs, vol. 27. Cambridge University Press (2015)

  16. Horiuchi, T.: The imbedding theorems for weighted Sobolev spaces. J. Math. Kyoto Univ. 29, 365–403 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  17. Horiuchi, T.: The imbedding theorems for weighted Sobolev spaces. II. Bull. Fac. Sci. Ibaraki Univ. Ser. A 23, 11–37 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hurri-Syrjänen, R., Vähäkangas, A. V.: Fractional Sobolev-Poincaré and fractional Hardy inequalities in unbounded John domains. Mathematika 61, 385–401 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hutchinson, J. E.: Fractals and self-similarity. Indiana Univ. Math. J. 30, 713–747 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  20. Ihnatsyeva, L., Lehrbäck, J., Tuominen, H., Vähäkangas, A. V.: Fractional Hardy inequalities and visibility of the boundary. Studia Math. 224, 47–80 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Käenmäki, A., Lehrbäck, J., Vuorinen, M.: Dimensions, Whitney covers, and tubular neighborhoods. Indiana Univ. Math. J. 62, 1861–1889 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  22. Korte, R., Kansanen, O. E.: Strong A -weights are A -weights on metric spaces. Rev. Mat. Iberoam. 27, 335–354 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Lehrbäck, J.: Hardy inequalities and Assouad dimensions. J. Anal. Math. 131, 367–398 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lehrbäck, J., Tuominen, H.: A note on the dimensions of Assouad and Aikawa. J. Math. Soc. Japan 65, 343–356 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  25. Lehrbäck, J., Vähäkangas, A. V.: In between the inequalities of Sobolev and Hardy. J. Funct. Anal. 271, 330–364 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  26. Luukkainen, J.: Assouad dimension: antifractal metrization, porous sets, and homogeneous measures. J. Korean Math. Soc. 35, 23–76 (1998)

    MathSciNet  MATH  Google Scholar 

  27. Mackay, J. M., Tyson, J. T.: Conformal Dimension: Theory and Application. University Lecture Series, vol. 54. American Mathematical Society, Providence (2010)

    Book  Google Scholar 

  28. Mäkäläinen, T.: Adams inequality on metric measure spaces. Rev. Mat. Iberoam. 25, 533–558 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  29. Muckenhoupt, B., Wheeden, R.: Weighted norm inequalities for fractional integrals. Trans. Amer. Math. Soc. 192, 261–274 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  30. Pérez, C.: Two weighted norm inequalities for Riesz potentials and uniform L p-weighted Sobolev inequalities. Indiana Univ. Math. J. 39, 31–44 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  31. Pérez, C., Wheeden, R.: Potential operators, maximal functions, and generalizations of A . Potential Anal. 19, 1–33 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  32. Strömberg, J. -O., Torchinsky, A.: Weighted Hardy spaces. Lecture Notes in Mathematics, vol. 1381. Springer-Verlag, Berlin (1989)

    Google Scholar 

  33. Torchinsky, A.: Real-variable methods in harmonic analysis. Pure and Applied Mathematics, vol. 123. Academic Press Inc, Orlando (1986)

    Google Scholar 

Download references

Acknowledgments

B.D. was partially supported by the National Science Centre, Poland, grant no. 2015/18/E/ST1/00239

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juha Lehrbäck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dyda, B., Ihnatsyeva, L., Lehrbäck, J. et al. Muckenhoupt Ap-properties of Distance Functions and Applications to Hardy–Sobolev -type Inequalities. Potential Anal 50, 83–105 (2019). https://doi.org/10.1007/s11118-017-9674-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9674-2

Keywords

Mathematics Subject Classification (2010)

Navigation