Skip to main content
Log in

The p-Harmonic Measure of Small Axially Symmetric Sets

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

Using the first eigenvalue/eigenvector pair of a singular eigenvalue problem (motivated by the Dirichlet eigenvalue problem for the Laplace-Beltrami operator on a spherical cap), we define certain nonnegative p-superharmonic and p-subharmonic functions on a convex cone which are singular at the vertex and vanish on the rest of the boundary. We use these functions to give upper and lower estimates of the p-harmonic measure near the vertex of the cone as well as the p-harmonic measure of a small spherical cap.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abramowitz, M., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)

    MATH  Google Scholar 

  2. Adulenko, L.D., Nesterov, S.V.: High-Precision Methods in Eigenvalue Problems and Their Applications. Chapman and Hall/CRC, Boca Raton (2005)

    Google Scholar 

  3. Aronsson, G.: On certain singular solutions of the partial differential equation \({u_{x}^{2}}u_{xx}+ 2\,u_{x}\,u_{y}\,u_{xy}+{u_{y}^{2}}u_{yy}= 0\). Manuscripta Math. 47, 135–158 (1984)

    Article  MathSciNet  Google Scholar 

  4. Aronsson, G.: Construction of singular solutions to the p-harmonic equation and its limit equation for p = . Manuscripta Math. 56, 133–151 (1986)

    Article  MathSciNet  Google Scholar 

  5. Bailey, P.B., Everitt, W.N., Zettl, A.: The SLEIGN2 sturm-liouville code. ACM Trans. Math. Softw. 27, 143–192 (2001). (http://www.math.niu.edu/~zettl/SL2/papers/bez3.pdf)

    Article  Google Scholar 

  6. Bang, S.-J.: Notes on my paper “eigenvalues of the laplacian on a geodesic ball in the n-sphere”. Chinese J. Math. 18, 65–72 (1990)

    MathSciNet  MATH  Google Scholar 

  7. Bennewitz, B., Lewis, J.L.: On the dimension of p-harmonic measure. Ann. Acad. Sci. Fenn. Math. 30, 459–505 (2005)

    MathSciNet  MATH  Google Scholar 

  8. Chavel, I.: Eigenvalues in Riemannian Geometry. Academic, New York (1984)

    MATH  Google Scholar 

  9. Courant, R., Hilbert, D.: Methods of Mathematical Physics, vol. 1. Interscience, New York (1953)

    MATH  Google Scholar 

  10. DeBlassie, D., Smits, R.G.: The p-harmonic measure of a small spherical cap. Le Matematiche 71, 149–171 (2016)

    MathSciNet  MATH  Google Scholar 

  11. Erdélyi, A. et al.: Higher Transcendental Functions, vol. 1. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  12. Granlund, S., Lindquist, P., Martio, O.: F-harmonic measure in space. Ann. Acad. Sci. Fenn. Math. 7, 233–247 (1982)

    Article  MathSciNet  Google Scholar 

  13. Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations. Dover, New York (2006)

    MATH  Google Scholar 

  14. Hirata, K.: Global estimates for non-symmetric Green type functions with applications to the p-Laplace equation. Potential Analysis 29, 221–239 (2008)

    Article  MathSciNet  Google Scholar 

  15. Jörgens, K.: Spectral Theory of Second Order Ordinary Differential Operators. Lecture Notes: Series No. 2. Matematisk Institut, Aarhus Universitet (1962)

    Google Scholar 

  16. Lewis, J.L.: Note on p-harmonic measure. Comput. Methods Funct. Theory 6, 109–144 (2006)

    Article  MathSciNet  Google Scholar 

  17. Lewis, J.L., Nyström, K., Poggi-Corradini, P.: P-harmonic measure in simply connected domains. Ann. Inst. Fourier (Grenoble) 61, 689–715 (2011)

    Article  MathSciNet  Google Scholar 

  18. Lindqvist, P.: http://www.math.ntnu.no/~lqvist/p-laplace.pdf (2006)

  19. Llorente, J.G., Manfredi, J.J., Wu, J.-M.: P-harmonic measure is not additive on null sets. Ann Scuola Norm. Sup. Pisa Cl. Sci. IV, 357–373 (2005)

    MathSciNet  MATH  Google Scholar 

  20. Lundström, N.L.P.: Phragmém-Lindelöf theorems and p-harmonic measures for sets near low-dimensional hyperplanes. Potential Analysis 44, 313–330 (2016)

    Article  MathSciNet  Google Scholar 

  21. Lundström, N.L.P., Vasilis, J.: Decay of p-harmonic measure in the plane. Ann. Acad. Sci. Fenn. Math. 38, 351–356 (2013)

    Article  MathSciNet  Google Scholar 

  22. Naimark, M.A.: Linear Differential Operators II. Ungar, New York (1968)

    MATH  Google Scholar 

  23. Peres, Y., Schramm, O., Sheffield, S., Wilson, D.B.: Tug-of-war and the infinity Laplacian. J. Amer. Math. Soc. 22, 167–210 (2009)

    Article  MathSciNet  Google Scholar 

  24. Peres, Y., Sheffield, S.: Tug-of-war with noise: a game-theoretic view of the p-Laplacian. Duke Math. J. 145, 91–120 (2008)

    Article  MathSciNet  Google Scholar 

  25. Rogers, L.C.G., Williams, D.: Diffusions, Markov Processes, and Martingales Volume 2: Itô Calculus. Wiley, Chichester (1987)

    MATH  Google Scholar 

  26. Titmarsh, E.C.: Eigenfunction Expansions Associated with Second Order Differential Equations, Part 1. Clarendon Press, Oxford (1962)

    Google Scholar 

  27. Weidman, J.: Spectral Theory of Ordinary Differential Operators. Lecture Notes in Mathematics 1258. Springer, Berlin (1987)

    Google Scholar 

  28. Zettl, A.: Sturm-Liouville Theory. American Mathematical Society, Providence (2005)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante DeBlassie.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

DeBlassie, D., Smits, R.G. The p-Harmonic Measure of Small Axially Symmetric Sets. Potential Anal 49, 583–608 (2018). https://doi.org/10.1007/s11118-017-9668-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9668-0

Keywords

Mathematics Subject Classification (2010)

Navigation