Advertisement

Potential Analysis

, Volume 48, Issue 4, pp 473–493 | Cite as

Heavy Tailed Approximate Identities and σ-stable Markov Kernels

Article

Abstract

The aim of this paper is to present some results relating the properties of stability, concentration and approximation to the identity of convolution through not necessarily mollification type families of heavy tailed Markov kernels. A particular case is provided by the kernels K t obtained as the t mollification of L σ(t) selected from the family \(\mathcal {L}=\{L^{\sigma }: \widehat {L^{\sigma }}{(\xi )=e^{-|{\xi }|}}^{\sigma }, 0<\sigma <2\}\), by a given function σ with values in the interval (0,2). We show that a basic Harnack type inequality, introduced by C. Calderón in the convolution case, becomes at once natural to the setting and useful to connect the concepts of stability, concentration and approximation of the identity. Some of the general results are extended to spaces of homogeneous type since most of the concepts involved in the theory are given in terms of metric and measure.

Keywords

Approximate identities Stable processes Spaces of homogeneous type 

Mathematics Subject Classification (2010)

Primary 42B25 60G52 28C99 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The research was supported by CONICET, ANPCyT (MINCyT) and UNL.

References

  1. 1.
    Aimar, H.: Distance and measure in analysis and PDE, preprintGoogle Scholar
  2. 2.
    Aimar, H.: Singular integrals and approximate identities on spaces of homogeneous type. Trans. Amer. Math. Soc. 292(1), 135–153 (1985). MR 805957MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Blumenthal, R.M., Getoor, R. K.: Some theorems on stable processes. Trans. Amer. Math. Soc. 95, 263–273 (1960). MR 0119247MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Bochner, S., Chandrasekharan, K.: Fourier Transforms, Annals of Mathematics Studies, no. 19. Princeton University Press, Princeton (1949). Oxford University Press, London. MR 0031582Google Scholar
  5. 5.
    Caffarelli, L, Silvestre, L: An extension problem related to the fractional Laplacian. Comm. Partial Diff. Equa. 32(7–9), 1245–1260 (2007). MR 2354493 (2009k:35096)MathSciNetCrossRefMATHGoogle Scholar
  6. 6.
    Calderón, C. P., Urbina, W.O.: Some Non Standard Applications of the Laplace Method, Special Functions, Partial Differential Equations, and Harmonic Analysis, Springer Proc. Math. Stat., vol. 108, pp 41–47. Springer, Cham (2014). MR 3297653Google Scholar
  7. 7.
    de Guzmán, M: Real Variable Methods in Fourier Analysis, North-Holland Mathematics Studies, vol. 46. North-Holland Publishing Co., Amsterdam-New York (1981). Notas de Matemática [Mathematical Notes], 75. MR 596037Google Scholar
  8. 8.
    Luukkainen, J, Saksman, E: Every complete doubling metric space carries a doubling measure. Proc. Amer. Math. Soc. 126(2), 531–534 (1998). MR 1443161MathSciNetCrossRefMATHGoogle Scholar
  9. 9.
    Macías, R.A., Segovia, C.: Lipschitz functions on spaces of homogeneous type. Adv. Math. 33(3), 257–270 (1979). MR 546295MathSciNetCrossRefMATHGoogle Scholar
  10. 10.
    Polya, G.: On the zeros of an integral function represented by Fourier’s integral. Messenger Math. 52, 185–188 (1923)MATHGoogle Scholar
  11. 11.
    Stein, E.M.: Singular Integrals and Differentiability Properties of Functions, Princeton Mathematical Series, No. 30. Princeton University Press, Princeton (1970). MR 44 #7280Google Scholar
  12. 12.
    Wu, J.-M.: Hausdorff dimension and doubling measures on metric spaces. Proc. Amer. Math. Soc. 126(5), 1453–1459 (1998). MR 1443418MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Zo, F.: A note on approximation of the identity. Studia Math. 55(2), 111–122 (1976). MR 0423013MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer Science+Business Media B.V. 2017

Authors and Affiliations

  1. 1.Instituto de Matemática Aplicada del Litoral, UNL, CONICET, FIQCCT CONICET Santa FeParaje El PozoArgentina
  2. 2.Instituto de Matemática Aplicada del Litoral, UNL, CONICETCCT CONICET Santa FeParaje El PozoArgentina

Personalised recommendations