Skip to main content
Log in

Leafwise Brownian Motions and Some Function Theoretic Properties of Laminations

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We discuss the value distribution of Borel measurable functions which are subharmonic or meromorphic along leaves on laminations. They are called leafwise subharmonic functions or meromorphic functions respectively. We consider cases that each leaf is a negatively curved Riemannian manifold or Kähler manifold. We first consider the case when leaves are Riemannian with a harmonic measure in L.Garnett sense. We show some Liouville type theorem holds for leafwise subharmonic functions in this case. In the case of laminations whose leaves are Kähler manifolds with some curvature condition we consider the value distribution of leafwise meromorphic functions. If a lamination has an ergodic harmonic measure, a variant of defect relation in Nevanlinna theory is obtained for almost all leaves. It gives a bound of the number of omitted points by those functions. Consequently we have a Picard type theorem for leafwise meromorphic functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, S. R.: Superharmonic functions on foliations. Trans. Amer. Math. Soc. 330, 625–635 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Atsuji, A.: A second main theorem of Nevanlinna theory for meromorphic functions on complete Kähler manifolds. J. Math. Soc. Japan 60, 471–493 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Atsuji, A.: On the number of omitted values by a meromorphic function of finite energy and heat diffusions. J. Geom. Anal. 20(4), 1008–1025 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Atsuji, A.: Value distribution of leafwise holomorphic maps on complex laminations by hyperbolic Riemann surfaces. J. Math. Soc. Japan 69(2), 1–25 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bass, R.: Probabilistic Techniques in Analysis. Springer, New York (1995)

    MATH  Google Scholar 

  6. Berndtsson, B., Sibony, N.: The \(\overline {\partial }\)-equation on a positive current. Invent. math. 147, 371–428 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  7. Candel, A.: The harmonic measures of Lucy Garnett. Adv. Math. 176(2), 187–247 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Candel, A., Conlon, L.: Foliations. I Graduate Studies in Mathematics, vol. 60. American Mathematical Society, Providence, RI (2003)

  9. Candel, A., Conlon, L.: Foliations. II Graduate Studies in Mathematics, vol. 60. American Mathematical Society, Providence, RI (2003)

  10. Candel, A., Gómez-Mont, X.: Uniformization of the leaves of a rational vector field. Ann. Inst. Fourier 45, 1123–1133 (1995)

  11. Debiard, A., Gaveau, B., Mazet, E.: Theoremes de comparaison en geometrie rieman- nienne. Publi. R.I.M.S. Kyoto 12, 390–425 (1976)

    MATH  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Ergodicity for Infinite Dimensional Systems. Cambridge University Press (1996)

  13. Dinh, T.-C., Nguyen, V.-A., Sibony, N.: Heat equation and ergodic theorems for Riemann surface laminations. Math. Ann. 354, 331–376 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  14. Feres, R., Zeghib, A.: Leafwise holomorphic functions. Proc. Amer. Math. Soc 131(6), 1717–1725 (2003). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  15. Fornæss, J. E., Sibony, N.: Riemann surfaces laminations with singularities. J. Geom. Anal. 8, 400–442 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fornæss, J. E., Sibony, N.: Unique ergodicity of harmonic currents on singular foliations of P 2. Geom. Funct. Anal. 19(5), 1334–1377 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  17. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet Forms and Symmetric Markov Processes. Walter de Gruyter (1994)

  18. Garnett, L.: Foliations, the ergodic theorem and Brownian motion. J. Funct. Anal. 51, 285–311 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hsu, E. P.: Stochastic Analysis on Manifolds Graduate Studies in Mathematics (Book 38). Amer Mathematical Society, Providence, RI (2002)

    Google Scholar 

  20. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, Second Edition, North-Holland Math. Library 24. North-Holland Publishing Co., Amsterdam; Kodansha, Ltd., Tokyo (1989)

    Google Scholar 

  21. Kim, K.-T., Lee, H.: Schwarz’s Lemma from a Differential Geometric Viewpoint. World Scientific Publishing (2010)

  22. Li, P., Schoen, R.: L p and mean value properties of subharmonic functions on Riemannian manifolds. Acta Math. 153, 279–301 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  23. Lins-Neto, A.: Simultaneous uniformization for the leaves of projective foliations by curves. Boletim da Sociedade Brasileira de Matemática 25(2), 181–206 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lins Neto, A.: A note on projective Levi flats and minimal sets of algebraic foliations. Ann. Inst. Fourier 49, 1369—1385 (1999)

    MathSciNet  MATH  Google Scholar 

  25. Lu, Y.-C.: Holomorphic mappings of complex manifolds. J. Diff. Geometry 2, 299–312 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  26. Ma, Z.-M., Röckner, M.: Introduction to the Theory of (Non-Symmetric) Dirichlet Forms, Universitext. Springer, Berlin (1992)

    Book  MATH  Google Scholar 

  27. Matsumoto, S: The dichotomy of harmonic measures of compact hyperbolic laminations. Tohoku Math. J. 64(2), 569–592 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Nemirovski, S.: Stein domains with levi-plane boundaries on compact complex surfaces. Mat. Zametki 66, 632–635 (1999). translation in Math. Notes 66(3–4), 522–525 (1999/2000)

    Article  MathSciNet  Google Scholar 

  29. Noguchi, J., Ochiai, T.: Geometric Function Theory in Several Complex Variables. American Mathematical Society, Providence, RI (1997)

    MATH  Google Scholar 

  30. Ohsawa, T.: L 2 Approaches in Several Complex Variables, Development of Oka–Cartan Theory by L2 Estimates for the \(\overline {\partial }\) Operator. Springer, Tokyo (2015)

    MATH  Google Scholar 

  31. Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion. Springer, Berlin (1991)

    Book  MATH  Google Scholar 

  32. Schwartz, L.: Semi-Martingales sur des Variétés Analytiques Complexes. Lecture Notes in Math, vol. 780. Springer (1980)

  33. Siu, Y.-T.: Nonexistence of smooth Levi-flat hypersurfaces in complex projective spaces of dimension ≥ 3. Ann. Math. 151, 1217–1243 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  34. Suzaki, K.: An SDE approach to leafwise diffusions on foliated spaces and its applications. Tohoku Math. J. 67, 247–272 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  35. Takeda, M., Trutnau, G.: Conservativeness of non-symmetric diffusion processes generated by perturbed divergence forms. Forum Math. 24, 419–444 (2010)

    MathSciNet  MATH  Google Scholar 

  36. Yau, S.-T.: Harmonic functions on complete Riemannian manifolds. Comm. Pure App. Math. 28, 201–228 (1975)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The author would like to thank the referee for several helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Atsushi Atsuji.

Additional information

Partly supported by the Grant-in-Aid for Scientific Research (C) 24540192, Japan Society for the Promotion of Science and Keio Gijuku Academic Development Funds.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Atsuji, A. Leafwise Brownian Motions and Some Function Theoretic Properties of Laminations. Potential Anal 48, 85–113 (2018). https://doi.org/10.1007/s11118-017-9627-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-017-9627-9

Keywords

Mathematics Subject Classification (2010)

Navigation