Potential Analysis

, Volume 46, Issue 1, pp 119–134 | Cite as

Heat Kernels in the Context of Kato Potentials on Arbitrary Manifolds

  • Batu GüneysuEmail author


By introducing the concept of Kato control pairs for a given Riemannian minimal heat kernel, we prove that on every Riemannian manifold (M,g) the Kato class \(\mathcal {K}(M,g)\) has a subspace of the form 𝖫 q (M,dϱ), where ϱ has a continuous density with respect to the volume measure μ g (where q depends on \(\dim (M)\)). Using a local parabolic 𝖫1-mean value inequality, we prove the existence of such densities for every Riemannian manifold, which in particular implies \(\text {\textsf {L}}^{q}_{\text {loc}}(M)\subset \mathcal {K}_{\text {loc}}(M,g)\). Based on previously established results, the latter local fact can be applied to the question of essential self-adjointness of Schrödinger operators with singular magnetic and electric potentials. Finally, we also provide a Kato criterion in terms of minimal Riemannian submersions.


Heat kernel estimates Kato potentials Parabolic mean value inequality 

Mathematics Subject Classification (2010)

31C12 58J35 58J65 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aizenman, M., Simon, B.: Brownian motion and Harnack inequality for Schrödinger operators. Comm. Purre. Appl. Math. 35(2), 209–273 (1982)CrossRefzbMATHGoogle Scholar
  2. 2.
    Braverman, M., Milatovich, O., Shubin, M.: Essential self-adjointness of Schrödinger-type operators on manifolds. Russian Math. Surveys 57(4), 641–692 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Elworthy, K.D.: Stochastic Differential Equations on Manifolds. London Mathematical Society Lecture Note Series, vol. 70. Cambridge University Press, Cambridge-New York (1982)Google Scholar
  4. 4.
    Enciso, A.: Coulomb systems on riemannian manifolds and stability of matter. Ann. Henri Poincare 12, 723–741 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Grigor’yan, A.: Estimates of heat kernels on Riemannian manifolds. Spectral theory and geometry (Edinburgh, 1998), 140–225, London Math. Soc. Lecture Note Ser., vol. 273. Cambridge University Press, Cambridge (1999)Google Scholar
  6. 6.
    Grigor’yan, A.: Heat kernel and analysis on manifolds. AMS/IP Studies in Advanced Mathematics, vol. 47. American Mathematical Society and International Press, Providence (2009)Google Scholar
  7. 7.
    Grummt, R., Kolb, M.: Essential selfadjointness of singular magnetic Schrödinger operators on Riemannian manifolds. J. Math. Anal. Appl. 388(1), 480–489 (2012)CrossRefzbMATHGoogle Scholar
  8. 8.
    Güneysu, B., Pallara, D.: Functions with bounded variation on a class of Riemannian manifolds with Ricci curvature unbounded from below. Math. Ann. 363(3-.4), 1307–1331 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Güneysu, B.: Nonrelativistic Hydrogen type stability problems on nonparabolic 3-manifolds. Ann. Henri Poincaré 13, 1557–1573 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Güneysu, B.: Kato’s inequality and form boundedness of Kato potentials on arbitrary Riemannian manifolds. Proc. Amer. Math. Soc. 142(4), 1289–1300 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Güneysu, B., Post, O.: Path integrals and the essential self-adjointness of differential operators on noncompact manifolds. Math. Z 275(1-2), 331–348 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Güneysu, B.: On generalized Schrödinger semigroups. J. Funct. Anal. 262, 4639–4674 (2012)CrossRefzbMATHGoogle Scholar
  13. 13.
    Kato, T.: Schrödinger operators with singular potentials. Israel J. Math. 13 (1972)Google Scholar
  14. 14.
    Kuwae, K., Takahashi, M.: Kato class measures of symmetric Markov processes under heat kernel estimates. J. Funct. Anal. 250(1), 86–113 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Lieb, E.H., Seiringer, R.: The Stability of Matter in Quantum Mechanics. Cambridge University Press, Cambridge (2010)zbMATHGoogle Scholar
  16. 16.
    Li, P., Wang, J.: Mean value inequalities. Indiana Univ. Math. J. 48(4), 1257–1283 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Liao, M.: Factorization of diffusions on fibre bundles. Trans. Amer. Math. Soc. 311(2), 813–827 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ouhabaz, E.-M., Stollmann, P., Sturm, K.-T., Voigt, J.: The Feller property for absorption semigroups. J. Funct. Anal. 138(2), 351–378 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Stollmann, P., Voigt, J.: Perturbation of Dirichlet forms by measures. Potential Anal. 5(2), 109–138 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Sturm, K.-T.: Schrödinger semigroups on manifolds. J. Funct. Anal. 118(2), 309–350 (1993)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  1. 1.Humboldt-Universität zu BerlinBerlinGermany

Personalised recommendations