Skip to main content

Minimum Riesz Energy Problems for a Condenser with Touching Plates

Abstract

We consider minimum energy problems in the presence of an external field for a condenser with touching plates A 1 and A 2 in \(\mathbb {R}^{n}\), \(n\geqslant 3\), relative to the α-Riesz kernel |xy|αn, \(0<\alpha \leqslant 2\). An intimate relationship between such problems and minimal α-Green energy problems for positive measures on A 1 is shown. We obtain sufficient and/or necessary conditions for the solvability of these problems in both the unconstrained and the constrained settings, investigate the properties of minimizers, and prove their uniqueness. Furthermore, characterization theorems in terms of variational inequalities for the weighted potentials are established. The approach applied is mainly based on the establishment of a perfectness-type property for the α-Green kernel with \(0<\alpha \leqslant 2\) which enables us, in particular, to analyze the existence of the α-Green equilibrium measure of a set. The results obtained are illustrated by several examples.

This is a preview of subscription content, access via your institution.

References

  1. Beckermann, B., Gryson, A.: Extremal rational functions on symmetric discrete sets and superlinear convergence of the ADI method. Constr. Approx. 32, 393–428 (2010)

    MathSciNet  Article  MATH  Google Scholar 

  2. Bourbaki, N.: Elements of Mathematics, General Topology, chapters 1–4. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

  3. Bourbaki, N.: Elements of Mathematics, Integration, chapters 1–6. Springer, Berlin (2004)

    Book  MATH  Google Scholar 

  4. Brelot, M.: On Topologies and Boundaries in Potential Theory. Lectures Notes in Math, vol. 175. Springer, Berlin (1971)

  5. Cartan, H.: Théorie du potentiel Newtonien: énergie, capacité, suites de potentiels. Bull. Soc. Math. Fr. 73, 74–106 (1945)

    MathSciNet  MATH  Google Scholar 

  6. Deny, J.: Les potentiels d’énergie finite. Acta Math. 82, 107–183 (1950)

    MathSciNet  Article  MATH  Google Scholar 

  7. Deny, J.: Sur la définition de l’énergie en théorie du potentiel. Ann. Inst. Fourier Grenoble 2, 83–99 (1950)

    MathSciNet  Article  MATH  Google Scholar 

  8. Doob, J.L.: Classical Potential Theory and Its Probabilistic Counterpart. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  9. Dragnev, P.D., Saff, E.B.: Constrained energy problems with applications to orthogonal polynomials of a discrete variable. J. Anal. Math. 72, 223–259 (1997)

    MathSciNet  Article  MATH  Google Scholar 

  10. Edwards, R.: Functional Analysis. Theory and Applications. Holt. Rinehart and Winston, New York (1965)

    MATH  Google Scholar 

  11. Fuglede, B.: On the theory of potentials in locally compact spaces. Acta Math. 103, 139–215 (1960)

    MathSciNet  Article  MATH  Google Scholar 

  12. Fuglede, B.: Asymptotic paths for subharmonic functions and polygonal connectedness of fine domains. Lectures Notes in Math., vol. 814, pp. 97–115. Springer, Berlin (1980)

    Google Scholar 

  13. Frostman, O.: Sur les fonctions surharmoniques d’ordre fractionnaire. Ark. Mat., Astr. Fys. 26A, N 16 (1939)

    MATH  Google Scholar 

  14. Hayman, W.K.: Subharmonic Functions, vol. 2. Academic Press, London (1989)

    MATH  Google Scholar 

  15. Kelley, J.L.: General Topology. Princeton, New York (1957)

    MATH  Google Scholar 

  16. Landkof, N.S.: Foundations of Modern Potential Theory. Springer, Berlin (1972)

    Book  MATH  Google Scholar 

  17. Moore, E.H., Smith, H.L.: A general theory of limits. Am. J. Math 44, 102–121 (1922)

    MathSciNet  Article  MATH  Google Scholar 

  18. Ninomiya, N.: Etude sur la théorie du potentiel pris par rapport à un noyau symétrique. J. Inst. Polytech., Osaka City Univ. Ser. A. Math. 8, 147–179 (1957)

    MathSciNet  MATH  Google Scholar 

  19. Rakhmanov, E.A.: Equilibrium measure and the distribution of zeros of extremal polynomials of a discrete variable. Sb. Math. 187, 1213–1228 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  20. Ohtsuka, M.: On potentials in locally compact spaces. J. Sci. Hiroshima Univ. Ser. A-1 25, 135–352 (1961)

    MathSciNet  MATH  Google Scholar 

  21. Zorii, N.: An extremal problem of the minimum of energy for space condensers. Ukr. Math. J. 38, 365–369 (1986)

    MathSciNet  Article  Google Scholar 

  22. Zorii, N.: A problem of minimum energy for space condensers and Riesz kernels. Ukr. Math. J. 41, 29–36 (1989)

    MathSciNet  Article  Google Scholar 

  23. Zorii, N.: A noncompact variational problem in Riesz potential theory. I; II. Ukr. Math. J. 47, 1541–1553 (1995). 48, 671–682 (1996)

    MathSciNet  Article  Google Scholar 

  24. Zorii, N.: Equilibrium potentials with external fields. Ukr. Math. J. 55, 1423–1444 (2003)

    MathSciNet  Article  Google Scholar 

  25. Zorii, N.: Equilibrium problems for potentials with external fields. Ukr. Math. J. 55, 1588–1618 (2003)

    MathSciNet  Article  Google Scholar 

  26. Zorii, N.: Constrained energy problems with external fields. Complex Anal. Oper. Theory 5, 775–785 (2011). doi:10.1007/s11785-010-0070-9

    MathSciNet  Article  MATH  Google Scholar 

  27. Zorii, N.: Equilibrium problems for infinite dimensional vector potentials with external fields. Potential Anal. 38, 397–432 (2013). doi:10.1007/s11118-012-9279-8

    MathSciNet  Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Zorii.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dragnev, P.D., Fuglede, B., Hardin, D.P. et al. Minimum Riesz Energy Problems for a Condenser with Touching Plates. Potential Anal 44, 543–577 (2016). https://doi.org/10.1007/s11118-015-9519-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9519-9

Keywords

  • Minimum energy problems
  • α-Riesz kernels
  • α-Green kernels
  • External fields
  • Constraints
  • Condensers with touching plates
  • α-Green equilibrium measures

Mathematics Subject Classification (2010)

  • 31C15