Skip to main content
Log in

Scale-invariant Boundary Harnack Principle on Inner Uniform Domains in Fractal-type Spaces

  • Published:
Potential Analysis Aims and scope Submit manuscript

Abstract

We prove a scale-invariant boundary Harnack principle for inner uniform domains in metric measure Dirichlet spaces. We assume that the Dirichlet form is symmetric, strongly local, regular, and that the volume doubling property and two-sided sub-Gaussian heat kernel bounds are satisfied. We make no assumptions on the pseudo-metric induced by the Dirichlet form, hence the underlying space can be a fractal space.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andres, S., Martin, T.: Barlow. Energy inequalities for cutoff functions and some applications. J. reine angew. Math. 699, 183–215 (2015)

  2. Aikawa, H.: Norm estimate of Green operator, perturbation of Green function and integrability of superharmonic functions. Math. Ann. 312(2), 289–318 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Aikawa, H.: Boundary Harnack principle and Martin boundary for a uniform domain. J. Math. Soc. Japan 53(1), 119–145 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aikawa, H.: Potential-theoretic characterizations of nonsmooth domains. Bull. London Math. Soc. 36(4), 469–482 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Aikawa, H., Lundh, T., Mizutani, T.: Martin boundary of a fractal domain. Potential Anal. 18(4), 311–357 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  6. Ancona, A.: Erratum: Principe de Harnack ‘a la fronti‘ere et theor‘eme de Fatou pour un operateur elliptique dans un domaine lipschitzien [Ann. Inst. Fourier (Grenoble) 28 (1978), no. 4, 169213; MR 80d:31006]. In Potential theory, Copenhagen 1979 (Proc. Colloq., Copenhagen, 1979), volume 787 of Lecture Notes in Math., p. 28. Springer, Berlin (1980)

  7. Ancona, A.: Sur la théorie du potentiel dans les domaines de John. Publ. Mat. 51(2), 345–396 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bass, R.F., Burdzy, K.: A boundary Harnack principle in twisted Hölder domains. Ann. of Math. 134(2), 253–276 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  9. Barlow, M.T., Bass, R.F.: Transition densities for Brownian motion on the Sierpinski carpet. Probab. Theory Related Fields 91(3-4), 307–330 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  10. Barlow, M.T., Bass, R.F.: Brownian motion and harmonic analysis on Sierpinski carpets. Canad. J. Math. 51(4), 673–744 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  11. Barlow, M.T., Bass, R.F.: Stability of parabolic Harnack inequalities. Trans. Amer. Math. Soc. 356(4), 1501–1533 (2004). (electronic)

  12. Barlow, M.T., Bass, R.F., Kumagai, T.: Stability of parabolic Harnack inequalities on metric measure spaces. J. Math. Soc. Japan 58(2), 485–519 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Blumenthal, R.M., Getoor, R.K.: Markov processes and potential theory. Pure and Applied Mathematics, vol. 29. Academic Press, New York (1968)

    Google Scholar 

  14. Barlow, M.T., Grigor’yan, A., Kumagai, T.: On the equivalence of parabolic Harnack inequalities and heat kernel estimates. J. Math. Soc. Japan 64(4), 1091–1146 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barlow, M.T., Perkins, E.A.: Brownian motion on the Sierpinski gasket. Probab. Theory Related Fields 79(4), 543–623 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Balogh, Z., Volberg, A.: Boundary Harnack principle for separated semihyperbolic repellers, harmonic measure applications. Rev. Mat. Iberoamericana 12(2), 299–336 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. Balogh, Z., Volberg, A.: Geometric localization, uniformly John property and separated semihyperbolic dynamics. Ark. Mat. 34(1), 21–49 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Chen, Z.-Q., Fukushima, M.: Symmetric Markov processes, time change, and boundary theory, volume 35 of London Mathematical Society Monographs Series. Princeton University Press, Princeton (2012)

  19. Dahlberg, B.E.J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3), 275–288 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Fitzsimmons, P.J., Hambly, B.M., Kumagai, T.: Transition density estimates for Brownian motion on affine nested fractals. Comm. Math. Phys. 165(3), 595–620 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes, volume 19 of de Gruyter Studies in Mathematics. Walter de Gruyter & Co., Berlin (1994)

  22. Grigor’yan, A., Hu, J.: Off-diagonal upper estimates for the heat kernel of the Dirichlet forms on metric spaces. Invent. Math. 174(1), 81–126 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Grigor’yan, A., Hu, J.: Heat kernels and Green functions on metric measure spaces. Canad. J. Math. 66(3), 641–699 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  24. Grigor’yan, A., Hu, J.: Upper bounds of heat kernels on doubling spaces. Mosc. Math. J. 14(3), 505–563, 641–642 (2014)

    MathSciNet  MATH  Google Scholar 

  25. Gyrya, P., Saloff-Coste, L.: Neumann and Dirichlet heat kernels in inner uniform domains. Astérisque, (336):viii+144 (2011)

  26. Grigor’yan, A., Telcs, A.: Two-sided estimates of heat kernels on metric measure spaces. Ann. Probab. 40(3), 1212–1284 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Hebisch, W., Saloff-Coste, L.: On the relation between elliptic and parabolic Harnack inequalities. Ann. Inst. Fourier (Grenoble) 51(5), 1437–1481 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  28. Kemper, J.T.: A boundary Harnack principle for Lipschitz domains and the principle of positive singularities. Comm. Pure Appl. Math. 25, 247–255 (1972)

  29. Kajino, N., Lierl, J.: Dirichlet heat kernel estimates in unbounded inner uniform domains in fractal-type spaces. In preparation

  30. Kumagai, T.: Estimates of transition densities for Brownian motion on nested fractals. Probab. Theory Related Fields 96(2), 205–224 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  31. Lierl, J., Saloff-Coste, L.: Parabolic Harnack inequality for time-dependent non-symmetric Dirichlet forms. Submitted. arXiv:1205.6493

  32. Lierl, J., Saloff-Coste, L.: The Dirichlet heat kernel in inner uniform domains: Local results, compact domains and non-symmetric forms. J. Funct. Anal. 266(7), 4189–4235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  33. Lierl, J., Saloff-Coste, L.: Scale-invariant boundary Harnack principle in inner uniform domains. Osaka J. Math. 51(3), 619–657 (2014)

    MathSciNet  MATH  Google Scholar 

  34. Martio, O., Sarvas, J.: Injectivity theorems in plane and space. Ann. Acad. Sci. Fenn. Ser. A I Math. 4(2), 383–401 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Ouhabaz, E.-M.: Invariance of closed convex sets and domination criteria for semigroups. Potential Anal. 5(6), 611–625 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  36. Saloff-Coste, L.: A note on Poincaré, Sobolev, and Harnack inequalities. Internat. Math. Res. Notices 2, 27–38 (1992)

    Article  MathSciNet  Google Scholar 

  37. Saloff-Coste, L.: Aspects of Sobolev-type inequalities, volume 289 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2002)

    Google Scholar 

  38. Wu, J.M.G.: Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble) 28(4), 147–167 (1978). vi

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janna Lierl.

Additional information

Initial stage of this research partially supported by NSF grant DMS 1004771.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lierl, J. Scale-invariant Boundary Harnack Principle on Inner Uniform Domains in Fractal-type Spaces. Potential Anal 43, 717–747 (2015). https://doi.org/10.1007/s11118-015-9494-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11118-015-9494-1

Keywords

Mathematics Subject Classifications (2010)

Navigation